Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 10of 83

Establishing Robust Software Quality Practices in
Space Software Systems — An Engineering-Driven
Perspective

Signatures and Approval

Name and Role Signature Date
Prepared by Laszlo Etesi 15.08.2025
Laszlo Etesi, Simon Fe-
Approved by lix yd 15.08.2025
Release by Laszlo Etesi % 15.08.2025

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS
Issue: 11R2

Release Date: 15.08.2025

Page: 2 of 83

Change Log

Issue/Rev. Date Author Reason for Change
11RO 2023/24 L. Etesi, Team First Issue
11R1 16.04.2025 L. Etesi, Team Integrated new infor-
mation and documen-
tation
11R2 15.08.2025 L. Etesi, S. Felix, Team | Review throughout
Change Record
Issue/Rev. | Date Description of Change Paragraph Page(s)
11R1 16.04.2025 | Major rework and extension, throughout throughout
integration of other documen-
tation and sources, streamlined
it all.
11R2 15.08.2025 | Minor refinements in the text, | throughout throughout
few clarifications

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective

© Ateleris GmbH

TABLE OF CONTENTS

TABLE OF CONTENTS
1. INTRODUCTION
2. APPLICABLE AND REFERENCE DOCUMENTS

2.1.
22.

3. TERMS, DEFINITIONS, AND ABBREVIATIONS

3.1.
3.2

4. SOFTWARE ENGINEERING FRAMEWORK

4.1.
42.
43.

4.3.1.
4.3.2.
4.3.3.

44.

4.4.1.
4.4.2.
4.4.3.
4.4.4.
4.4.5.
4.4.6.

4.5.

4.5.1.
4.5.2.
4.5.3.
4.5.4.
4.5.5.
4.5.6.
4.5.7.
4.5.8.
4.5.9.
4.5.10. Independent Software Verification

Doc-Nr.:
Issue:

Release Date:
Page:

Intern-TN-0004-ATS
11R2

15.08.2025

30f83

APPLICABLE DOCUMENTS

REFERENCE DOCUMENTS

TERMS AND DEFINITIONS

OV VWV NN N o w

ABBREVIATIONS

GUIDING PRINCIPLES

AGILE DEVELOPMENT PROCESS

WHY AGILE?

Typical Sprint Structure

Definition of Ready (DoR)

Definition of Done (DoD)
QUALITY MANAGEMENT

Document Control

Code Control

Controlled Agile Development Process

Reviews and Audits

Guidelines for Writing Effective Requirements

Requirements Identification and Traceability

TESTING AND VERIFICATION

Unit Tests

Static Verification

Dynamic Verification
Formal Verification

Hardware Tests

Performance Testing
Integration, System, and Scenario Testing

Regression Testing

Continuous Integration (Cl)

10
12

12
15
15
17
18
18
19
19
22
23
25
30
32
34
35
36
37
38
39
40
41
42
42
43

5. CONTINUOUS INTEGRATION AND CONTINUOUS DELIVERY (CI/CD) FOR SPACE

SOFTWARE
51. OVERVIEW
5.2. EMBEDDED CI/CD CONSIDERATIONS
53. COMMON CHALLENGES AND MITIGATIONS
54. STREAMLINED AND REPRODUCIBLE CI/CD ENVIRONMENT
5.5. CI/CD PIPELINE VWWORKFLOW FOR EMBEDDED SYSTEMS
5.6. INTEGRATING CI/CD WITH PROJECT VWWORKFLOWS

45

45
46
46
47
49
50

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective

© Ateleris GmbH

57.

6. VIRTUALIZATION AND PLATFORM SIMULATION

6.1.
6.2.
6.3.
6.4.
6.5.

7. MODEL-BASED SYSTEM ENGINEERING (MBSE) FOR EMBEDDED SPACE SOFTWARE..

7.1.

7.2.
7.2.1.
7.2.2.

8. CASE STUDIES

8.1.
8.1.1.
8.1.2.
8.1.3.

8.2.
8.2.1.
8.2.2.
8.2.3.
8.2.4.

8.3.
8.3.1.
8.3.2.
8.3.3.
8.34.

8.4.
8.4.1.
8.4.2.
8.4.3.
8.4.4.

8.5.
8.5.1.
8.5.2.
8.5.3.
8.5.4.

Tables

TABLE 1: APPLICABLE DOCUMENTS
TABLE 2: REFERENCE DOCUMENTS
TABLE 3: TERMS AND DEFINITIONS
TABLE 4: ABBREVIATIONS

WHAT Is MBSE?

AUTOMATED MULTI-PLATFORM PROTOCOL GENERATION

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 4 of 83

BEST PRACTICES AND LESSONS LEARNED IN CI/CD

PURPOSE AND BENEFITS

LEVELS OF SIMULATION AND FIDELITY TRADE-OFFS

INTEGRATION IN DEVELOPMENT WORKFLOWS

LIMITATIONS AND VALIDATION STRATEGY

SUMMARY OF VIRTUALIZATION BEST PRACTICES

RELEVANCE TO SPACE SYSTEMS

Practical Application in Software Projects

Challenges and Considerations

STIX FLIGHT SOFTWARE — A VALIDATION OF OUR GUIDING PRINCIPLES

Challenges

Approach

Lessons Learned

NASA CFS — RELIABILITY THROUGH MODULAR ARCHITECTURE

Challenges

Approach

Benefits
Lessons Learned

EGSE SCRIPTING LANGUAGE — INHERENTLY SAFE EXECUTION

Challenges
Approach

Benefits

Lessons Learned

CIl/CD AUTOMATION OF ONBOARD IMAGE PROCESSING PIPELINE

Challenges
Approach

Benefits

Lessons Learned

Challenges

Approach

Benefits

Lessons Learned

51
54

54
55
56
57
58

59

59
59
60
62

64

64
64
65
65
66
66
67
69
70
70
70
71
71
72
72
73
73
75
75
76
77
78
81
81

10

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 50f 83
TABLE 5: PROJECT ELEMENT CODES USED IN SPACE PROJECTS. 20
TABLE 6: DOCUMENT TYPE CODES WITH OFTEN-USED CODES HIGHLIGHTED IN ORANGE. 21
TABLE 7: SAMPLE APPLICABILITY MATRIX OF DIFFERENT TESTING METHODS IN DIFFERENT EXECUTION ENVIRONMENTS. X
= EASILY APPLICABLE, (X) = APPLICABLE 35

Figures

FIGURE 1: A PROJECT MANAGEMENT ILLUSTRATION SHOWING HOW TYPICALLY INFORMATION IS GAINED DURING

PROJECT EXECUTION, WHICH HELPS MAKE BETTER DECISIONS BUT INCREASES THE COST OF CHANGE.c.cu.... 16
FIGURE 2: MASTER DOCUMENT LIST FOR THE LIFECYCLE ANALYSIS PROJECT (ACT) 20
FIGURE 3: A MORE GENERIC ILLUSTRATION OF OUR AGILE APPROACH, ENCOMPASSING THE ENTIRE SOFTWARE

DEVELOPMENT LIFECYCLE. 24

FIGURE 4: PHASES OF OUR CONTROLLED AGILE LIFECYCLE — FROM INITIAL PROJECT SETUP (CAPTURING IDEAS AND NEEDS
WITH PROTOTYPING) TO A REPEATING CYCLE OF REQUIREMENTS, DESIGN, IMPLEMENTATION, AND VALIDATION
IN SPRINTS, AND FINALLY TO OPERATION/REFINEMENT. THIS APPROACH MERGES AGILE ITERATION WITH FORMAL
MILESTONE CHECKPOINTS (SRR, PDR, CDR, QR/AR, ETC.) AS REQUIRED BY STANDARDS, USING CI/CD AND

CONTINUOUS V&V AT EACH STEP. 25
FIGURE 5: REVIEW INFORMATION FLOW AS PER [AD3] 26
FIGURE 6: TYPICAL PROJECT LIFE CYCLE OF AN ESA PROJECT AS PER [AD3] 27
FIGURE 7: REQUIREMENT ANALYSIS, DESIGN, AND PLANNING PROCESS WITH GITHUB DASHBOARDS.oceeruerreersennns 28
FIGURE 8: IMPLEMENTATION AND THE DEFINITION OF “DONE” IN THE PROJECT. 29
FIGURE 9: SOURCE CODE CONTROL AND REVIEW (CONTINUOUS V&V) IN THE PROJECT. 29
FIGURE 10: CONTINUOUS DEPLOYMENT IN THE PROJECT. 30
FIGURE 11: ILLUSTRATION OF THE OVERALL FLIGHT SOFTWARE SYSTEM, TAILORED TO A SPECIFIC MISSION.cccocevuene. 67
FIGURE 12: VISUALIZATION OF THE FLIGHT SOFTWARE WITH THE THREE RUNTIME LAYERS. 68
FIGURE 13: SYSTEM DIAGRAM FOR THE SOFTWARE VERIFICATION FACILITY AND TESTING APPROACHES.......cccoceeerererennns 69
FIGURE 14: SCHEMATIC OF THE FINAL PRE-PROCESSING PIPELINE, AS PREVIOUSLY SHOWN. 73
FIGURE 15: BUILDROOT BUILD PROCESS 74
FIGURE 16: THIS ILLUSTRATION SHOWS A PRELIMINARY CI/CD PIPELINE DESIGN, FROM MODEL CREATION TO

PERFORMANCE EVALUATION. 75
FIGURE 17: THIS ILLUSTRATION SHOWS THE COMMUNICATION PATHS BETWEEN VARIOUS ACTORS IN A SPACE SYSTEM.

PROTOCOL PACKETS ARE GENERATED, MODIFIED, INTEGRATED, AND PROCESSED AT EACH STAGE.ccccevuevvenene 78
FIGURE 18: THE AUTOMATED ASN.1-TO-CODE PROCESS ALLOWS UPDATES TO THE PROTOCOL SPECIFICATIONS TO BE

EASILY INTEGRATED INTO ALL SOFTWARE COMPONENTS AND VERSION-CONTROLLED. 80

FIGURE 19: ALL COMMUNICATION PACKETS ARE SPECIFIED IN ASN.1. SHOWN HERE IS TM(1,1) “SUCCESSFUL
ACCEPTANCE VERIFICATION REPORT.” THE SPECIFICATION GENERATES C, SCALA, ADA, AND OTHER CODE THAT
CAN BE INTEGRATED INTO EXISTING SOFTWARE. 80

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 6 of 83

1. INTRODUCTION

NB: Although this document focuses on embedded systems and software, it discusses many practices that
apply to any software development project.

Developing reliable software for space systems presents a unique set of challenges. Space missions
operate in remote, constrained, and non-maintainable environments, where even small software issues
can lead to mission delays or failures. In this context, robust software quality practices are essential to
ensure systems behave as expected throughout their operational lifetime.

This document provides an engineering-driven perspective on establishing and maintaining high-quality
software practices for embedded space systems. The principles and workflows described here reflect
practical experience and lessons learned from real-world space projects. These practices form the
foundation of our internal development approach, aiming to help teams deliver functional but also
maintainable, testable, and resilient software. The document is aimed at software architects and devel-
opers, product assurance/quality assurance managers, and project managers familiarizing themselves
with software product assurance and development practices.

This document combines modern development techniques, including continuous integration and de-
livery (CI/CD), automated testing, virtualization, model-based design, and formal verification, while
maintaining a strong focus on clarity and simplicity. Rather than proposing a one-size-fits-all method-
ology, it offers a flexible set of guidelines that can be adapted to different project contexts and criti-
cality levels. The traceability of requirements and their reproducibility (criteria that code must meet
before acceptance) are recurring themes, ensuring that quality is built-in at every step.

The document is organized as follows: Chapter 4 introduces an overarching software engineering
framework that ties together agile processes, quality management, and verification strategies and how
they map to formal standards, like those issued by the European Consortium for Space Standardization
(ECSS). Chapter 5 delves into CI/CD pipelines, providing detailed workflows and open-source tooling
guidelines that complement Chapter 4. Chapter 6 discusses virtualization and platform simulation,
showing how virtual platforms and digital twins support continuous testing (and linking back to Cl in
Chapter 5 and verification in Chapter 4). Chapter 7 covers Model-Based System Engineering (MBSE),
illustrating how modeling approaches (using tools like Capella, TASTE, ASN.1) enhance management
and design, connecting to traceability and automation themes from earlier chapters. Finally, Chapter 8
provides case studies demonstrating these practices applied in actual missions, turning challenges into
lessons learned.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 7 of 83

2. APPLICABLE AND REFERENCE DOCUMENTS

2.1. Applicable Documents

Table 1: Applicable Documents

Ref. Description Doc-Nr. Issue/Rev.

[AD1] ECSS Software Engineering Standard ECSS-E-ST-40C Rev. 1, 6 March 2009
[AD2] ECSS Software Product Assurance Standard ECSS-Q-ST-80C Rev. 1, 6 March 2009
[AD3] ECSS Project planning and implementation ECSS-M-ST-10C Rev. 1, 6 March 2009
[AD4] NASA Software Engineering Requirements NASA NPR 7150.2D Rev. D, 2019

[AD5] Software Assurance and Software Safety Standard NASA-STD-8739.8 Rev. B, 2022

[AD6] DO-178C: Software Considerations in Airborne Systems ~ RTCA DO-178C Rev. C, Dec 2011
[AD7] NASA Appendix C: How to Write a Good Requirement Online

[AD8] NASA Software Engineering Handbook NASA-HDBK-2203 B, April 2020

[AD9] ECSS Software Engineering Handbook ECSS-E-HB-40A 11 December 2013

2.2. Reference Documents

Table 2: Reference Documents

Ref. Description Doc-Nr. Issue/Rev.
[RD1] Agile Handbook for ECSS Software Projects ECSS-E-HB-40-01A 2020
[RD2] TASTE Toolset User Manual (ASSERT Set of Online
Tools for Engineering)
[RD3] Capella MBSE Tool’s Official Documentation Online
[RD4] ASN.1 Specification ISO/IEC 8824-1:2021 2021
[RD5] ASN1SCC Compiler Online
[RD6] QEMU Emulator’s Official Project Documenta- Online
tion
[RD7] Core Flight System (cFS) User Guide Online
[RD8] Stainless Formal Verification Framework EPFL Online
[RD9] MISRA C:2012 Guidelines for the use of the C MISRA:C2023 3rd Edition
language in critical systems
[RD10] Orion SysML Model, Digital Twin, and Lessons 15.11.2022
Learned for Artemis |
[RD11] Anthropic’s Claude Code Online
[RD12] ASN.1 PUS-C Types Library Online
[RD13] From Verified Scala to STIX File System Embed- Hamaza, |, Felix, S., Kunéak, V., Nuss- 2022
ded Code Using Stainless baumer, I., Schramka, F. (2022). From

Verified Scala to STIX File System Em-
bedded Code Using Stainless. In:
Deshmukh,).V., Havelund, K., Perez, I.
(eds) NASA Formal Methods. NFM
2022. Lecture Notes in Computer Sci-
ence, vol 13260. Springer, Cham.
https://doi.org/10.1007/978-3-031-
06773-0_21

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 8 of 83
[RD14] NASA Operational Simulator for Small Satellites Online
(NOS3)
[RD15] BFG Repor-Cleaner Online
[RD16] Awesome Safety Critical (Collection on guidelines Online
on building safety critical software)
[RD17] Viper (Verification Infrastructure for Permission- Online
based Reasoning)
[RD18] Tamarin Prover Online

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr.:

Issue:

Release Date:

Page:

3. TERMS, DEFINITIONS, AND ABBREVIATIONS

3.1. Terms and Definitions

Table 3: Terms and Definitions

Term

Definition

Intern-TN-0004-ATS
11R2

15.08.2025

9 of 83

Definition

A statement of the exact meaning of
a word, especially in a dictionary.

Traceability Ma-
trix

A document that maps requirements
to corresponding design, code, and
test artifacts.

Definition of
Ready (DoR)

Criteria a backlog item must meet be-
fore being worked on (e.g., clear ac-
ceptance criteria).

Definition of

Criteria that determine when a back-

TCL

Tool Command Language is a script-
ing language commonly used for auto-
mated testing and hardware interac-
tions.

LEON3

A 32-bit processor core based on the
SPARC V8 architecture is widely used
in space applications.

TSIM

A simulator for LEON processors
was developed by Gaisler and is used
to test and debug embedded soft-
ware.

FLASH

Non-volatile memory stores firmware
and software and retains data without
power.

Done (DoD) log item is considered completed.

Agile An iterative development approach
focusing on collaboration, adaptability,
and incremental delivery.

Backlog A prioritized list of tasks, features, or
requirements to be addressed in a
project.

Sprint A fixed period (usually 2 to 4 weeks)
in agile during which specific tasks are
completed.

Pull Request A request to merge code changes

(PR) into the main codebase, usually fol-

lowing a review.

Field Program-
mable Gate Ar-
ray

A reprogrammable integrated circuit
is used to implement custom hard-
ware logic.

Static Verifica-
tion

Code analysis without executing it
(e.g., using linters or static analysis
tools).

Dynamic Verifi-
cation

Runtime checks to detect unexpected
or incorrect behavior during execu-
tion.

ASN.1

Abstract Syntax Notation One is a
standard for defining data structures
for reliable cross-platform communi-
cation.

Formal Verifica-
tion

Mathematical methods to prove the
correctness of code against its specifi-
cations.

Software Verifi-
cation Facility

An environment for automated and
repeatable software testing across
multiple execution platforms.

Operating Sys-
tem Abstraction

A layer that allows software to run
unmodified across different OS plat-

Digital Twin A virtual replica of hardware used for
simulation and validation during devel-
opment.

Regression Tests ensure new changes don’t

Testing break existing functionality.

Software Bus

A message-based communication sys-
tem is used between different mod-
ules or apps (e.g., in cFS).

Telemetry

Data are sent from spacecraft sys-
tems to ground control for monitor-

ing.

Telecommand

Commands sent from ground control
to spacecraft systems.

Code Generator

A tool that automatically creates
source code based on high-level spec-
ifications or models.

Atomic Inter-
faces

Interfaces where operations are ei-
ther completed entirely or not at all
(no partial updates).

Reproducible
Builds

Builds that are bit-identical when re-
peated, ensuring reliability and con-
sistency.

Layer forms.

TASTE The ASSERT Set of Tools for Engi-
neering, an ESA toolchain for model-
based real-time system development.

Model-Based An approach that uses models to sup-

System Engi- port system requirements, design,

neering analysis, and verification.

Electrical Hardware and software systems are

Ground Support | used on the ground to test and inter-

Equipment act with spacecraft.

ANTLR ANother Tool for Language Recogni-
tion is a parser generator used to
read, process, and translate struc-
tured text.

QEMU Quick EMU]Iator is an open-source
hardware emulator used for virtual-
ization and embedded development.

NASA Core A modular, reusable flight software

Flight System

framework developed by NASA for
spacecraft systems.

Version Control

A system that records code changes
over time (e.g., Git).

FLOPS

Floating Point Operations Per Sec-
ond, a measure of computational per-
formance.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Consultative
Committee for
Space Data Sys-
tems

An international organization that de-
velops standards for space data sys-
tems.

Doc-Nr.:
Issue:

Release Date:

Page:

Intern-TN-0004-ATS
11R2

15.08.2025

10 of 83

Test-driven De-
velopment

A software development method
where tests are written before code
implementation.

PUS-C

Packet Utilization Standard — Revision
C, ESA’s standard for spacecraft te-
lemetry and telecommand services.

Verification and
Validation

(V&v)

Processes to ensure software meets
requirements and performs intended
functions.

Software Devel-
opment Model

A structured framework used to plan,
control, and manage software devel-
opment.

Review Item
Discrepancy

A documented issue identified during
formal project reviews that must be
resolved.

WSL Windows Subsystem for Linux is a
compatibility layer that runs Linux bi-
naries natively on Windows.

Infrastructure Managing and provisioning infrastruc-

as Code ture using machine-readable configu-

ration files.

ASN1SCC

ASN.1 Space Certified Compiler, a
code generator that produces safe
and reliable code from ASN.1 specifi-
cations.

Qualification
Model

A hardware or software model used
for final testing and verification before
flight.

POLA

The Principle Of Least Astonishment
is a design principle stating that sys-
tems should behave as users expect.

Protoflight
Model

A flight-ready system that is used for
both qualification and the actual mis-
sion.

KISS

Keep It Simple, Stupid is a design
principle emphasizing simplicity and
avoiding unnecessary complexity.

European Con-
sortium for
Space Standard-
ization

A consortium that develops space en-
gineering standards in Europe.

Fail-Fast Meth-
odology

A development approach where sys-
tems are designed to report failures,
simplifying debugging and improving
reliability immediately.

3.2. Abbreviations

Table 4: Abbreviations

Abbreviation

Definition

AADL

Architecture Analysis & Design Language

ANTRL ANother Tool for Language Recognition

ASN.1 Abstract Syntax Notation One

ASN1SCC ASN.1 Space Compiler

ASTE The ASSERT Set of Tools for Engineering

ASW Application Software

BER/DER/PER Encoding rules (Basic/Distinguished/Packed Encoding Rules)
CCSDS Consultative Committee for Space Data Systems
CD Continuous Delivery

CDR Critical Design Review

cFS Core Flight System (NASA framework)

Cl Continuous Integration

Cl/CD Continuous Integration / Continuous Delivery
CPU Central Processing Unit

DoD Definition of Done

DoR Definition of Ready

ECSS European Cooperation for Space Standardization
EGSE Electrical Ground Support Equipment

EO Earth Observation

EPFL Ecole Polytechnique de Lausanne

ESA European Space Agency

FDIR Failure Detection, Identification, and Recovery
FHNW Fachhochschule Nordwestschweiz

FLOPS Floating Point Operations

FPGA Field Programmable Gate Array

HIL Hardware-in-the-loop

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 11 of 83

1aC Infrastructure as Code

IDPU Instrument Data Processing Unit

KISS Keep It Short and Simple

LARA Lab for Automated Reasoning and Analysis

MBSE Model-Based Software Engineering

ML Machine Learning

NASA National Aeronautics and Space Agency

NOS3 NASA Operational Simulator for Small Satellites

OBC Onboard Computer

OSAL Operating System Abstraction Layer

PDR Preliminary Design Review

PFM Proto Flight Model

Pl Principal Investigator

PKI Public Key Infrastructure

POLA Principle of Least Astonishment

PR Pull Request

PUS-C Packet Utilization Services revision C

QEMU Quick Emulator

QM Qualification Model

RID Review Item Discrepancy

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS Real-Time Operating System

SDL Specification and Description Language

SDM Software Development Model

SIL Software-in-the-Loop

SRS Software Requirements Specification

SSS System/Subsystem Specification

STIX Spectrometer/Telescope for Imaging X-rays

Susw Startup Software

SVF Software Verification Facility

SysML System Modelling Language

TDD Test-Driven Development

TM/TC Telemetry/Telecommand

TN Technical Note

V&V Verification and Validation

WSL Windows Subsystem for Linux

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 12 of 83

4. SOFTWARE ENGINEERING FRAMEWORK

This chapter describes our overarching software engineering framework for embedded space systems.
It guides a structured development process to ensure quality from day one. Key themes include agile
methodologies, rigorous quality management, and comprehensive verification & validation (V&V). This
framework acts as the backbone for subsequent chapters: the Continuous Integration/Delivery pipe-
line discussed in Chapter 5, the virtualization approaches in Chapter 6, and the model-based techniques
in Chapter 7 all integrated into this framework to reinforce traceability, reproducibility, and quality at
every step.

For general systems engineering guidance, also see the ECSS Software Engineering Handbook [AD9]
and NASA’s Systems Engineering Handbook [AD8], which advocate many of the practices detailed
here (requirements tracking, verification planning, etc.) in a project’s lifecycle.

4.1. Guiding Principles

Throughout the software engineering process, we adhere to a set of guidelines that emphasize sim-
plicity, clarity, and collaboration. These principles help manage the inherent complexity of space soft-
ware and ensure that design decisions are made with the end goals (reliability, maintainability, testabil-
ity) in mind:

o Early availability of concise specifications: Aim to define the software’s fundamental
functionality and interfaces during the system/software requirements phases. By fixing core
requirements and interfaces early (while expecting some changes later), you can provide a
stable foundation for development. Any detailed changes can be managed in an agile way as
new information becomes available (e.g., feedback from instrument teams or evolving mission
needs).

¢ Malleability over upfront complexity: Because requirements can and will change, avoid
overengineering hypothetical scenarios. Instead, design simple, modular, and easily modifiable
components. This approach allows the software to evolve gracefully without unnecessary com-
plexity.

e Focus on essential requirements: Distinguish between crucial vs. nice-to-have features.
Nonessential requirements and gold-plating unnecessarily increase complexity and risk. Focus-
ing on what is genuinely needed for mission success keeps the system lean and easier to verify.
Start simple and build out later.

e Outcomes over implementation details: Emphasize achieving the required outcomes
(meeting requirements and user needs) rather than defining particular implementation choices.
This flexibility in design encourages innovation and easier adaptation if constraints change (e.g.,
needing to swap a library or algorithm). It also helps in contingency situations — the team can
pivot to a different implementation as long as the publicly visible behavior stays the same.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 13 of 83

Minimize concurrency unless needed: Non-deterministic concurrency (multi-threading,
parallel tasks) is a significant source of complexity and complicates testing exponentially. Adopt
the following approach: Only use multiple threads or interrupts where necessary for perfor-
mance or real-time needs. Wherever possible, choose simpler single-threaded designs or co-
operative scheduling, which are easier to reason about and verify.

Ensure components are individually testable: Each software component or module
should have clearly defined responsibilities and interfaces. This modularity (loose coupling and
high cohesion) makes writing unit tests for each isolated component feasible. Design for test-
ability by exposing clear APIs and avoiding hidden dependencies.

Atomic interfaces: Any operation that modifies system state should be atomic (all-or-noth-
ing). Interfaces are designed such that a function call or service completes fully with a con-
sistent outcome or has no effect if an error occurs, leaving the system state unchanged. This
prevents partial updates that could leave the system inconsistent and simplifies error handling
(rollback is inherent).

Reproducible builds: Maintain the complete development under version control (for exam-
ple, storing compiler binaries, build scripts, Docker container definitions, etc., in the reposi-
tory). This practice guarantees that anyone can reproduce or create any software version
dependent on their local environment. This greatly aids debugging (a bug can be tied to an
exact build) and supports continuous integration since the build environment is consistent on
all machines. It also aligns with ECSS standards for configuration control and ensures that the
“it works on my machine” issues are eliminated. Lastly, problems like a rare buffer overflow
may manifest much later. Keeping older builds will greatly support root cause analyses because
older versions are available for analysis.

Pragmatic use of code generators: Where appropriate, leverage code generation to re-
duce human error and enforce consistency. For example, using ASN.1 and an auto-code gen-
erator (ASN1SCC) to produce telemetry/telecommand packets from one specification en-
sures that all subsystems use identical data definitions. Code generators are used in well-de-
fined areas (such as communication protocol interface stubs) to prevent manual coding errors
while keeping the overall system understandable.

Strive for reliable, resilient, robust software: This overarching goal aims to incorporate
practices at every stage to improve reliability:

o Extensive, automated testing: Plan for regular automated testing at every stage using
both simulated environments and actual hardware when available. This includes re-
gression tests to catch errors quickly.

o Defensive programming: Write software assuming that errors can happen. Use defen-
sive checks and handle error conditions gracefully (never assume a function will always
succeed; always code the else/exception branch).

o Follow the fail-fast methodology: During development, software should stop immediately
when an anomaly is detected (e.g., via assertions during development) rather than

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 14 of 83

propagating incorrect data. This makes bugs straightforward to locate and forces de-
velopers to fix issues at their source.

o Test-driven development (TDD) for bug fixes: When a bug is found, create a test that
reproduces it (if possible) to prevent regressions, then fix the bug so the test passes.

o Regular code reviews: Execute peer reviews of code regularly, especially via the pull
request process (see Sections 4.2 and 4.4.4). This catches issues that automated tools
might miss and spreads knowledge among the team.

o Keep it simple (KISS principle): Prefer simple solutions over complex ones as long as
they fulfill the requirements. Simpler code is more straightforward to test and less
prone to bugs. Specifically, implementations are preferred with as little state as possi-
ble.

o Loose coupling: Ensure modules have minimal dependencies on each other’s internal
details so a flaw in one module is less likely to affect others.

o Avoid dynamic memory in critical code: If at all reasonable, especially for flight software,
use static memory allocation to avoid issues like memory fragmentation during
runtime. To avoid dynamic allocation, consider using memory pools or allocating
enough memory for the expected worst-case at startup to avoid runtime allocations.

o Small incremental changes: Encourage small, frequent code commits or updates to the
codebase with continuous integration. This way, issues are detected faster-.

o Principle of Least Astonishment (POLA): Design interfaces and code that behave in a way
users (or other developers) would expect to reduce misuse and errors.

o Write unit tests to break the code: Don’t write unit tests with the attitude (or hope) of
getting a green test flag but with an adversarial approach to breaking the code.

Clear software architecture and layering: Document the software architecture early,
outlining tasks, threads (if any), their interactions, and resource usage. Proper layering (e.g.,
separation of application logic from low-level drivers and OS abstraction) is enforced. This also
helps map requirements for implementation and identifies critical components that may need
extra scrutiny or formal verification.

Invest in a great development environment: Being able to step through code is key in
complex software projects. Only relying on hardware typically makes debugging more chal-
lenging and bugs more difficult to reproduce consistently. Still, one should invest time early in
the project to build good hardware debugging setups. NB: Hardware watchdogs may run into
a starvation trap when debugging, so you may need to turn the hardware watchdogs off while
debugging. Also, keep in mind that compiler optimizations may complicate debugging, thus you
should strive to develop code with reasonable performance even without compiler optimiza-
tions.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 15 of 83

These guiding principles form the ethos of our engineering approach. They are independent of the
project to ensure we haven’t deviated under schedule pressure or scope changes. By instilling these
principles in the team, we create a quality and deliberate design culture crucial for successful space
missions.

4.2. Agile Development Process

We implement an agile methodology throughout the entire software project lifecycle, emphasizing
close collaboration between our development and the client’s engineering teams. Importantly, our
agile approach begins from day one, during initial co-engineering, requirements gathering, and design,
and continues through implementation and testing. This end-to-end agile philosophy ensures continu-
ous stakeholder engagement and frequent verification of progress against expectations. The Agile
Handbook for ECSS Software Projects [RD1] provides an excellent guideline.

4.3. Why Agile?

Adopting an agile development process offers several key benefits:

¢ Flexibility: Agile methods accommodate minor changes to requirements or design even late
in development without requiring heavy change-control overhead. This is critical in space pro-
jects where new findings (e.g., from hardware tests or scientific analysis) can necessitate re-
quirement tweaks.

o Adaptability: Implementation priorities can be easily adjusted between iterations, allowing
the project to respond to changing schedules or external dependencies (such as hardware or
other software delays).

¢ Enhanced Visibility: Short iteration cycles (sprints) produce incremental software deliver-
ies. This provides continuous validation opportunities, better progress tracking, and early iden-
tification of deviations or risks.

¢ Continuous Validation: By integrating testing into each sprint (including integration of sim-
ulators as early as possible), we ensure that the software grows by constantly checking against
requirements.

At the start of the project, collaboratively gather and prioritize requirements and tasks into a struc-
tured backlog. Use an issue-tracking tool (like Jira, GitHub Issues, or GitLab) to manage the backlog,
tagging each item with relevant metadata (requirement ID, priority, etc.). Development then proceeds
iteratively in sprints, typically 3-6 weeks. Only pull an item into a sprint when it meets the Definition
of Ready (DoR) (clear, actionable, and testable). Each backlog item (feature, improvement, or bug fix)
is designed, implemented, tested, and documented according to our Definition of Done (DoD) criteria
during the sprint.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 16 of 83

Agile is not an excuse to run a project without focus until funds are depleted. We use
our agile process to control the software lifecycle from vision to implementation within the budget,
time, and specification.

1. First, create a shared vision with the customer and understand the need.

2. Then formulate a big picture (we often call this “the frame” or “the box”), which is defined by
the available budget and identifies any cost- or risk-driving requirements (is it going to be a
car, a bike, a ship, or a plane?).

3. Then start filling in that box with a design. Use mockups and process visualization tools.

4. Iterate over 2 and 3 until the Software Requirements Specification and the Detailed Software
Design document are complete.

5. Start the agile development process.

Figure 1 illustrates the need for this approach. It shows that at the beginning of a project the cost of
decision making and changes is low, and the uncertainty (degree of freedom) is high. Over the course
of the project, decisions are made, and information is gained, all the while we lose the ability to easily
make changes and the cost of changes increases. This is why sharing a vision and building a box (which
defines the primary cost drivers) is essential.

The project’s progress and
past decisions help decrease
uncertainties but increase
the cost of changes.

The information gained
during project execution
lowers uncertainty and
reduces risks, but it also
reduces the degree of
freedom for change.

Uncertainty and Degree of Freedom
Information Gain and Cost of Change

>

Time and Project Progress

Figure 1: A project management illustration showing how typically information is gained during project execution, which
helps make better decisions but increases the cost of change.

Figure 4 in the next Section illustrates how the agile approach spans requirements engineering, devel-
opment, V&V, and delivery.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 17 of 83

4.3.1. Typical Sprint Structure

This process starts once the Backlog has been prepared. Ensure everyone on the team signs off

on the process. You can’t organize and manage a process without buy-in from its members. Each

sprint generally consists of the following steps:

1.

Sprint Planning: The team establishes a clear sprint goal (what valuable increment will be
delivered). Backlog items required to achieve this goal are selected based on priority and esti-
mated effort. The team ensures the scope fits the sprint duration given their capacity (team
velocity). Crucially, each candidate item is verified against the DoR at this stage — if an item
isn’t “ready” (unclear or missing info), it’s not included. We document and make the sprint
backlog visible (e.g., a sprint board in GitHub).

Task Implementation: Each selected backlog item (often broken into tasks) is developed
on a dedicated feature branch in the version control system (e.g., Git on GitHub). Developers
commit code to that branch frequently (at least daily), enabling continuous integration checks.
Integrate often with the latest mainline to avoid drift, i.e., pull in changes from the main branch.
Write unit tests for the new code during implementation and update relevant documents
(requirements, design descriptions) as needed. Productivity tools, like the LLM-based solution
Claude Code, can support unit test writing [RD11]. Once a task’s code meets the DoD (see
below) and all automated CI tests pass in the feature branch, the developer opens a pull re-
quest (PR) to merge into the main branch.

Code Review & Integration: The PR triggers a (more or less) formal code review by peers
(at least one or two other developers must sign off). The reviewer checks code quality, style,
and tests and ensures the changes fulfill the intended requirements. Any issues are captured
as review comments. The developer addresses these in code or documentation. Once all com-
ments are resolved and reviewers approve, the code is merged into the main branch (often
called the main or development branch). The Cl pipeline runs again on the merged code to
double-check nothing was lost in integration.

Deployment & Validation: Deploy the new software increment to a test environment at
the end of the sprint (or continuously for each feature as merged). In a space project context,
“deploy” may mean running the software on an emulator or an engineering hardware model
or simply packaging a release for stakeholder evaluation. Perform a sprint system demo or
validation session, running through key use cases to show that new features work end-to-end.
If possible, integrate with any available hardware or higher-level system to validate in a realistic
context or run some longer-running mission or environment simulation (e.g., run the satellite
software in a flatsat or simulated environment with other components).

Sprint Review & Retrospective: Present the sprint results to stakeholders, comparing
what was achieved vs. the goal. Stakeholders verify that the increment is aligned with expec-
tations. Immediately after, the team holds a retrospective meeting to discuss how to improve
and make any process adjustments for the next sprint. Action items (e.g., “improve our unit

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 18 of 83

test coverage on driver code” or “coordinate earlier with the hardware team on interface
changes”) are recorded.

6. Next Cycle Planning: After the sprint closes, plan the next sprint with updated priorities
(back to step 1). This iterative cycle repeats until the product backlog is completed or the
project ends (e.g., launch date or delivery milestone).

4.3.2. Definition of Ready (DoR)

Use the DoR as a checklist before pulling an item into a sprint:
e The backlog item’s acceptance criteria are clearly defined and unambiguous.

e All dependencies or blocking issues are resolved (e.g, if the item needs an interface
spec, that spec is available; if it needs hardware, the hardware is ready).

e The item (story points or hours) is estimated and fits within sprint-given priorities.

¢ The team understands the item; do a brief backlog grooming where team members can ask
questions to clarify an item.

e The item has testability criteria, so it is known how to verify it when done.

If any of these are false, the item stays in the backlog until the gaps are closed (ensuring we don’t start
work without requirements).

4.3.3. Definition of Done (DoD)

Consider a backlog item done only when it meets all of the following typical criteria:
e All code implemented for the item’s requirements, and the code has been peer-reviewed.

¢ Unit tests and (where relevant) integration tests are written covering the new changes,
with passing results. Use an “adversarial testing” mindset, i.e., writing tests not just for the
happy path but also for edge cases and potential failure modes. Try to break the code.

e Test coverage is adequate (the internal target might be 80% code coverage for new code,
though focus more on critical paths coverage rather than purely numeric targets).

¢ No new compiler or static analyzer warnings were introduced (a well-engineered ClI
pipeline runs static code analysis; any new issues must be fixed or justified).

¢ All automated CI checks pass, including unit tests, regression tests, static analysis,
style/lint checks, etc.

¢ Documentation is updated as needed: implemented requirements are marked as such,
design documents or user manuals are updated for the new feature, and code is commented
on appropriately. Also here, LLMs may help with writing and updating documentation [RD11].

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 19 of 83

e Integration tested: If the change affects interfaces, perform a basic integration test in a dev
environment or simulator to ensure it interacts well with other components.

¢ DoD Review: Optionally, review the checklist before closing the item in the tracking system
to ensure nothing was skipped.

4.4. Quality Management

Quality management is integral to ensuring the successful delivery of a space software product or
service. We implement robust document and code control processes, controlled agile workflows, and
systematic reviews to guarantee quality at every project lifecycle phase. In our context, “quality” means
compliance with requirements, reliability in operation, and maintainability over the mission life — all of
which are objectives of both industry standards and our internal practices. The primary drivers for
quality management processes are ECSS-M-ST-40 and ECSS-Q-ST-80C.

4.4.1. Document Control

Apply a rigorous document control approach suitable for a regulated environment (which demands
high traceability, accountability, and control), including the blow items. Some document control is also
beneficial for non-regulated environments!

¢ Unique identification and versioning: Every important project document (requirements
specs, design descriptions, interface control documents, test plans, user manuals, etc.) is given
a unique identifier (document number) and is version-controlled. The format can be project-
specific. A general format for smaller collaborations could follow this format:

< >-< >-<NNNN>-<ORIGINATOR>-I<ISSUE>R<REVISION>-< >
For example, the Software Requirements Specification might be
-R5-0001-ATS-TI1RO-

More extensive project collaborations may follow a more complex referencing scheme:

<PROJECT>-<ORIGINATOR>-<PROJECT_ELEMENT>-<DOCUMENT_TYPE>-<NNNN>-I<ISSUE>R<REVISION>-<NAME>

Table 5 and Table 6 provide an extensive list of sample project elements and document types.
Document changes undergo a controlled process and result in new revisions, which are rec-
orded in a change log table within the document. More significant changes lead to a new re-
lease.

¢ Master Document List: Maintain a master list of all project documents, which includes each
document’s ID, title, current revision, date, and owner. Formal processes often require this
list (ECSS and other standards expect it). It helps anyone in the project find the latest approved
version of any document. Figure 2 shows an example snippet of a master document list for a
project.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 20 of 83

List of Documents

Project:
Number:

Code
RS
DD

Green Space Logistics Analysis Tool
5

Document Number Document Name Responsible Author Company Created On DraftIssue Released Issue Released Date Comment
GSL-RS-0001-ATS Software and C ison Tool ACT 0. Biihler Ateleris 31.03.2022 11R0 21.04.2022
GSL-DD-0001-ATS Software Design Specification Assessment and Comparison Tool ACT 0. Bithler Ateleris 05.05.2022 11R1 06.05.2023

Figure 2: Master document list for the lifecycle analysis project (ACT)

Access control and storage: Official documents are typically stored in a central repository
(like a document management system or a version control repository for docs) with appro-
priate access rights. Drafts and working copies might reside in a collaborative tool (like Con-
fluence or SharePoint), but final releases are archived in PDF form in the central repository.

Review, approval, and Release: High-impact documents undergo formal reviews. For in-
stance, a System Requirements Review (SRR) will formally review the System Requirements
Specificatin (SRS). Each document has an approval page (as seen at the start of this document)
with signatures and dates for “Prepared by,” “Reviewed by,” and “Approved by.” Do not con-
sider a document baseline official until it’s approved by the responsible authority (e.g., project
manager or QA lead). Intermediate drafts might be marked as such (e.g., 11ROdraft or “Draft
for review”). Ideally, released documents highlight changes with track changes to indicate any
changes made during the last iteration to the reviewer. Those changes will be applied once
work on the next release version begins (see next element, “change control”).

Change control: Changes to baseline documents follow a change process. Minor changes
might be made through an agile process (issue tracking tool linked to the doc section). In
contrast, major changes may require a formal change request or even a review meeting if
impacting external parties. Align this with the configuration management principles of ECSS,
where changes in requirements or design documents are evaluated for impact, authorized, and
traceable. Any change to a released document must be done with track changes activated and
traced in the change control section (“Change Log”). To facilitate the review process, the
documents are issued with the tracked changes visible (integrate view and use highlighted text
only to improve legibility). The previous changes are applied when work on a new issue or
release begins. This guarantees the traceability of changes across different versions of the same
document.

Traceability in documentation: Ensure requirements documents maintain bidirectional
traceability (each requirement has a unique ID and can be traced to design elements and tests).
This might be managed within the document via tables, spreadsheets, or an external tool. This
traceability is crucial for verification (and is elaborated in Section 4.5).

Table 5: Project element codes used in space projects.

Project Element Code Project Element ‘

AlV Assembly Integration & Validation
CON Contractual

ENV Environment

GS Ground Segment

INST Instrument

LV Launch Vehicle

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 21 of 83

MAN Management

MIS Mission

MOC Mission Operation Centre

PL Payload

PF Platform

PA Product Assurance

SCI Science

SOC Science Operations & Data Centre

SC Spacecraft

SYS System Engineering

TDA Technology

Table 6: Document type codes with often-used codes highlighted in orange.

Document Type Code Document Type

MOU Agreement/Memorandum of Understanding
AD Assumption Document

AN Analysis

AOO Announcement of Opportunity

AR Article

BR Brochure

CE Certificate (Certificate/Statement of Conformance, etc.)
CCN Contract Change Notice

co Contract/Rider

CP Change Proposal (Engineering/Document)
CR Change Request (Engineering/Configuration)
CT Cost Documents (Estimate/CaC/CtC, etc)
DEC Declaration

DCR Document Change Request

DD Design Description/Document

DN Delivery Notice/Release Notice/Transfer Notice
DP Data Package

DRD Document Requirements Definition

DW Drawing/Diagram

EM E-Mail

EX Executive Summary

Fl File (Software/Configuration/Network)
FAX Fax

HO Handout/Presentation

IF Interface Requirement/Specification/Interface Control Document/EID
INS Instruction

ITT Invitation to Tender

LB Logbook

LE Letter

LEG Legal Text

LI List

MAN Manual/User Guide/Handbook

ML Model

MN Minutes of Meeting

MOU Memorandum

MX Matrix/Compliance

NC Non-Conformance

oD Operations Document

(o] Agenda

POL Policy Document

PG Progress Report/Status Report

PL Plan

PO Proposal

PR Procedure

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 22 of 83

PT Product Tree

REG Regulation

RD Request for Deviation

REC Record

RP Report (Technical, Budget, Cost, Manpower, Travel, Audit, etc.)

RFQ Request for Quotation

RS Requirement Document/Specification (System, Subsystem, Unit, Equipment level)

RW Request for Waiver

RES Resolution

SC Schedule/Network/Barchart/Chart

SP Specifications

ST Standards

sow Statement of Work

TC Tender Conditions

TOR Terms of Reference

TN Technical Note

TP Test Procedure/Test Plan

TR Test Report/Test Result

TS Test Specification

VCD Verification Control Document

WBS Work Breakdown Structure

Wi Work Instruction

WP Working Paper

WPD Work Package Description

4.4.2. Code Control

In parallel with document control, implement stringent code control practices:

Use Git for source code version control (and related scripts/configurations). All project
code resides in a Git repository (or multiple repositories for separate components, if needed),
typically hosted on a platform like GitHub or GitLab for convenience.

Every code change is logged with author and timestamp, and history cannot be altered
without a trace (Git’s immutable history). Enforce that controlled process (feature branch +
PR as described below).

The repository’s main branches (e.g., main and perhaps a release branch) are protected; only
merged commits via reviewed PRs can be updated. Direct commits to main are disallowed to
ensure review and Cl checks always happen.

Leverage the platform’s automation features for code control. For example, on GitHub,
you can use GitHub Actions (Cl) and branch protection rules; on GitLab, you can use similar
pipelines and protected branch settings. Commits that fail Cl or lack approvals cannot be
merged.

The repository is backed up or mirrored to prevent loss (especially important for long
missions). Use tags to tag versions (using Git tags) for significant milestones (e.g., a tag v1.0 for
the software delivered at CDR).

Branching strategy: We typically use a simple branching strategy. Sometimes, it’s a variant
of GitFlow or a trunk-based approach with short-lived feature branches. The goal is to mini-
mize long-lived branches (to reduce merge complexity) and ensure everyone integrates

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 23 of 83

frequently. For mission software, it is advisable to maintain a long-term branch for each major
release (for bug fixes on that release), and any development is applied to the main branch.
Short-lived branches are deleted after they have been moved back into the main development
branch.

o Issue tracking link: Integrate issue tracking with commits. For example, each commit mes-
sage references an issue ID or requirement ID it addresses. This gives traceability from code
commits back to requirements or problem reports.

Using platforms like GitHub/GitLab also gives us audit logs and insights (like code frequency and
contributions), which, while not directly a quality measure, provide transparency. It’s worth noting
that these practices align with ECSS-Q-ST-80C configuration management and NASA’s expectations
for software configuration control — the source code is a configuration item that must be controlled,
and our process ensures that.

4.4.3. Controlled Agile Development Process

We sometimes refer to our approach as a “controlled agile” process, combining agile best practices
with the rigor and traceability required in space projects. The controlled agile approach enhances
product quality through the following:

¢ Traceability and transparency: As mentioned, we use an issue tracker to log every fea-
ture, bug, or change request. Each of these, when implemented, is linked to a Git commit (via
commit messages or PR descriptions). This creates a chain: requirement, issue, code commit,
and test results. Anyone can trace why a change was made or which bug it fixes. This satisfies
standards that require linking code to requirements and problem reports, like ECSS.

¢ Incremental implementation and validation: Short sprints and frequent deliveries can
facilitate continuous user/stakeholder feedback. Early prototypes can be shown to scientists
or systems engineers to validate that the team is on the right track, reducing the risk of late
rework. This also supports the ECSS principle of early and iterative verification — rather than
waiting until all code is done to test, we can test as we go.

¢ Disciplined integration: You can’t merge half-working code; everything must build and pass
tests. Code review acts as a peer audit, often catching missing test cases or non-conformance
to coding standards (like MISRA C rules in critical components). This improves stability by
effectively treating the main branch as always shippable (when something is in the main, it’s
been tested and reviewed).

¢ Continuous integration & delivery (CI/CD): Automation is key to the controlled pro-
cess. Prepare Cl pipelines (Chapter 5 details this) that compile the code, run static analysis,
run tests, and even package the software for deployment (for example, creating a firmware
image or installer). This means every change is automatically largely verified, enforcing quality
gates (like no static analysis regressions and no test failures). Continuous delivery ensures a
deployable artifact at any point — valuable for frequent demos or even emergency patches.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 24 of 83

e Quality metrics: The Cl generates metrics (test coverage, complexity, etc.). In some cases,
it might be advisable to treat thresholds on these metrics as quality gates to maintain code
health (for instance, maintaining at least X% coverage or ensuring the cyclomatic complexity
of functions stays within set bounds).

o If possible, it is good practice to incorporate Digital Twin concepts for functional software
verification of embedded software. This means investing in a virtual platform or high-fidelity
simulator of the system on which the software can be run. Integrating this into Cl makes
testing the software on near-real hardware on each commit possible. For example, one can
use a CPU/system emulator (like QEMU, TSIM or T-EMU) in Cl to boot the software and run
some operational scenarios. This continuous V&V catches hardware-specific issues early. It
also complements formal test campaigns by continuously testing between them.

Figure 3 and Figure 4 below illustrate the main phases of our controlled agile lifecycle in a typical
project. It shows how upfront co-engineering (ideation, prototyping) is followed by a development
cycle and how continuous integration and feedback loop back into refinement.

Project Setup Requirements, Design, Implementation, and Validation Operation

Ideate and Test Implement Refine

’H Ideas & Needs T —> Requirements
)
Validation & Ul Mockups &
Clarification Idea Tests
Requirement
& Design — Design
Updates

> Backlg ——p PN

Planning

|

Select

Cl/cD Refine
[—~ \

Merge () Implement ») Operation

Test &

Review Verify

Figure 3: A more generic illustration of our agile approach, encompassing the entire software development lifecycle.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2

Release Date: 15.08.2025

Page: 25 of 83
Engineering VV&AIT Delivery

> >

< % <

Requirement
(from System,

Interface, SRS, Requirement
etc) Verification &

Validation

Validation & Minimal Design
Clarifications & Design Test
A End of Sprint
Requirements & g Deigh

Design Update

Select
X Y

(Integrate,
Build, Test Refine

& Deploy

v /
\)) Delivery &
Backlog — Sprint Planning Merge Integration

Implement

Co-Engineering & Agile Requirements
and Design Cycle

Review Test&

Verif
Agile Design Implementation, =

and VVEAIT Cycle

Figure 4: Phases of our controlled agile lifecycle — from initial Project Setup (capturing ideas and needs with prototyping) to
a repeating cycle of Requirements, Design, Implementation, and Validation in sprints, and finally to Operation/Refinement.
This approach merges agile iteration with formal milestone checkpoints (SRR, PDR, CDR, QR/AR, etc.) as required by
standards, using CI/CD and continuous V&V at each step.

4.4.4. Reviews and Audits

Depending on the project’s required rigor (set by the client or mission classification), incorporate
formal reviews and audits at key points while keeping our process agile and responsive. For large, highly
regulated projects (e.g., ESA missions or NASA projects), standard milestone reviews are mandatory:
SRR (System Requirements Review), PDR (Preliminary Design Review), CDR (Critical Design Review),
and possibly others like QR (Qualification Review), AR (Acceptance Review). Comprehensive docu-
mentation and software artifacts are delivered to an independent review board for scrutiny during
these.

Prepare for these reviews by ensuring that:

e All relevant documents (from the document list) are up to date and reviewed internally be-
forehand.

e The software is at a maturity level appropriate for the review (e.g., by CDR, we should have a
working prototype of every major component with testing evidence).

e Traceability matrices (requirements to design, code, and tests) are populated.

e Known issues and risks are documented (with mitigation plans).

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 26 of 83

e All deliverables are packed and can be easily shipped.
e All necessary stakeholders and reviewers have been identified and informed.

e The review process and RID tracking spreadsheets (see below) have been agreed on.

During formal reviews, reviewers raise Review Item Discrepancies (RIDs). Tracking each RID in a RID

log (e.g., a spreadsheet), assigning responsible engineers, and systematically addressing them is possible;

no special software or tool is needed. A follow-up review or “RID closure” meeting is often held to
verify fixes before proceeding. Figure 6 illustrates a typical ESA project lifecycle with these reviews and
Figure 5 shows the RID information flow in the ECSS process, which we emulate for formality.

Typically, a RID log contains the following items:

¢ RID Reference: A unique identifier assigned to each RID for traceability.

e Originator: The individual or organization who raised the RID.

o Classification: The type or severity of the issue (e.g., major, minor, editorial).
e Reviewer Comment: A description of the concern or issue raised.

¢ Contractor Position: The response or justification provided by the contractor or author

of the reviewed document or code.
e Action: The agreed resolution or change to be implemented.
e Actionee: The person or team responsible for implementing the action.

e Status: The current state of the RID (e.g., open, closed with action, closed).

SUPPLIER P’°"‘df,:';eoata' CUSTOMER

Validates the Data-

Coordination

Reviews the
datapackage

Reports findings
and
recommendations

REVIEW
AUTHORITY

REVIEW
TEAM

Figure 5: Review information flow as per [AD3]

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2

Release Date: 15.08.2025

Page: 27 of 83

Phases
Activities
Phase 0 Phase A Phase B Phase C Phase D Phase E Phase F
JLMDR LPRR
Mission/Function
ﬂSRR J PDR
Requirements
CDR
Definition
!LQR
Verification [|
AR
LORR
Production
FRR
1 JORR JJELR
Utilization
1} LRR
MCR

Disposal

Figure 6: Typical project life cycle of an ESA project as per [AD3]

The review process can be tailored for smaller or less formally regulated projects. Instead of big-bang
reviews, incremental or rolling reviews may be more appropriate:

e For example, a sprint review series with stakeholders that covers all PDR topics by the time
the project reaches that stage.

e It might still be advisable to do an internal documentation audit at a midpoint.

e Thekey is “right-sizing” the process: ensure enough rigor (no critical aspect goes un-reviewed)
but avoid unnecessary paperwork that doesn’t add value. For instance, CubeSat payload soft-
ware might not need a full formal SRR (think “New Space”) if the team is small and in constant
communication, but it is still advisable to do a structured walkthrough of requirements to
catch omissions.

We integrate reviews within the agile workflow: every code PR is a mini-review (by peers). Require-
ments and design discussions happen in backlog grooming (which is like a continuous SRR/PDR in
pieces). By the time we get to a formal review, there should be no surprises — it's more of a formality
to satisfy external governance since, internally, we’ve been reviewing all along.

Benefits of embedded reviews:

e They provide early feedback on deliverables — catching issues when they are cheaper to fix.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 28 of 83

¢ They enforce discipline continuously rather than just at gates — quality is maintained through-
out.

e They familiarize stakeholders (like the client) with progress, reducing the chance of significant
changes being requested later.

e As a concrete practice, it is good to maintain a “review checklist” at the end of each sprint or
major feature: “Is there a test for every new requirement? Did we run a static analysis? Are
the docs updated?” This is like a mini-audit that keeps everyone ready for formal audits.

Figure 7 through Figure 10 illustrate an example of this robust yet streamlined review and quality

assurance approach, suitable for projects with less stringent regulatory constraints.

‘ ’ GitHub Project Dashboard

Bundles of Detailed Stories
in Sprint Plan

Backlog
G User Stories are collected and added to the Backlog.
e User Stories are analyzed and become more detailed (requirements)

e The Detailed User Stories are bundled and added to the Sprint Plan

Figure 7: Requirement analysis, design, and planning process with GitHub dashboards.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 29 of 83

GitHub Project Dashboard: Kanban View

In Progress Optional

To be done In progress Done %‘?\;@ Functionality

° e e iy Unit and Integration Tests
AN
Documentation

Figure 8: Implementation and the definition of “Done” in the project.

Creation of Pull
Request once feature

Automatic execution of tests. implementation or
Code coverage and additional il bug fix completed
code analysis possible. (Done)

a Local development of » ao — e ‘

an item from Sprint Automatic execution of tests.

On fail: red flag Code coverage and additional
e and back to the code analysis possible.
.\' gﬂ@ Commit to developer ‘ o ‘
r P —~= | development branch
."/ éé on GitHub On fail: back to
thewdeveloper @ Review of Pull

Request (different

8
developer)

Figure 9: Source code control and review (continuous V&V) in the project.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 30 of 83

@ Review of Pull @ %t‘ional)

Merge into Master LT s
Request (different —~ branch deployment to —)

developer) staging server

T @ Release and % l
On fail: back to Beploih oo o : Cf:

the developer release server
with feedback

Validation

Figure 10: Continuous deployment in the project.
4.4.5. Guidelines for Writing Effective Requirements

The following guidelines are adapted from NASA’s “Appendix C: How to Write Good a Requirement”
[AD7] a widely recognized reference for creating clear, precise, and verifiable system requirements.
Incorporating best practices from NASA helps ensure your project’s requirements are well-defined,
consistent, and effective, ultimately leading to successful system development and validation. This ap-
proach is in line with ECSS-Q-ST-80C requirements on traceability and verification coverage.

4.4.5.1. Terminology
e “Shall” — Indicates a mandatory requirement.
o “WIill” — States a fact or declares intent.

e “Should” — Describes a goal or recommendation.

4.4.5.2. Structure and Style

e Use active voice and clearly state the subject acting (e.g., “The system shall measure...”).

e Clearly identify the responsible party for personnel requirements (“Party X shall perform Y”).
e Keep product requirements focused on what must be achieved, not how to achieve them.

e Use consistent, defined terminology throughout your document.

e Provide precise tolerances for quantitative or performance specifications.

¢ Avoid operational details or implementation specifics (describe “what” is needed rather than

“how” to do it).
e State requirements positively whenever possible (avoid negative phrasing like “shall not”).

4.4.5.3. Clarity and Completeness

e Write concise, simple, and unambiguous statements.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 31 0of 83

e FEach requirement should express a single thought; avoid combining multiple requirements into
one statement.

e Clearly define all assumptions and provide a rationale where needed.

e Minimize the use of “To Be Determined” (TBD). Instead, use best estimates and mark them
as “To Be Resolved” (TBR), with clear actions, responsible persons, and deadlines to resolve
them.

4.4.5.4. Validation Checklist
Ensure requirements meet these key criteria:

¢ Clarity:

LR T3 ¢

o Avoid ambiguous terms (“as appropriate,” “and/or,” “etc.”).
o Clearly specify subject and predicate; avoid indefinite pronouns (“this,” “these”).
¢ Completeness:

o Confirm that all relevant requirement areas (functional, performance, interface, envi-
ronment, safety, security, maintainability, reliability, etc.) have been addressed.

o Explicitly state and verify all assumptions.
e Compliance:
o Requirements should be at the correct level (system, subsystem, component).

o Avoid implementation details, operational procedures, or personnel assignments
within requirements.

¢ Consistency:

o Ensure no contradictions exist between the requirements and related systems/docu-
ments.

o Maintain consistent terminology aligned with the project glossary.
e Traceability:

o Each requirement must clearly trace back to higher-level requirements, mission goals,
or operational needs.

o Confirm each requirement is necessary; distinguish between “needs” and “wants.”
e Correctness:
o Verify technical feasibility and accuracy of all requirements and assumptions.

¢ Functionality and Performance:

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 32 of 83

o Confirm that the requirements fully define the necessary functions to meet system
objectives.

o Provide realistic and justified performance specifications and tolerances.
¢ Interfaces:
o Clearly define all internal and external interfaces.
¢ Maintainability and Reliability:
o Specify maintainability and reliability requirements clearly and measurably.
o Include error detection, handling, recovery, and responses to undesired events.
¢ Verifiability/Testability:
o Requirements must be testable via inspection, demonstration, analysis, testing, etc.

M M

o Avoid vague, unverifiable terms (e.g., “user-friendly,” “easy,” “robust,” “fast,” “ade-
quate”).

e Data Usage:
o Clearly state “don’t care” conditions when applicable to improve design clarity and
portability.

4.4.6. Requirements Identification and Traceability

Clear and structured requirement management is crucial for effective project execution and quality
assurance. We follow a pragmatic yet rigorous approach to defining, naming, and tracing requirements,
aligning closely with established industry standards such as ECSS and NASA’s recommendations. As
every requirement must be verifiable, well-managed requirements can be traced to their verification
method and result.

4.4.6.1. Requirements Identification and Naming Convention

Use a hierarchical identifier for each requirement to ensure uniqueness and context. A typical format
is:

DOC-SECTION-COMPONENT-NNN
Where:
e DOC indicates the document or source. For example:
o SSS (System/Subsystem Specification) for system-level requirements.
o SRS (Software Requirements Specification) for software-specific requirements.

o ICD (Interface Control Document) for interface requirements.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 33 of 83

¢ SECTION/GROUP is an optional category or grouping, often based on functionality or sub-
system. For example, “COMM” for communications, “CTRL” for the control system, etc.

e COMPONENT is optional for projects with multiple distinct components or modules. It’s
useful to denote which component a requirement is for. For instance, in a combined software
subsystem, we might prefix it with the subsystem name.

e NNNN is a zero-padded sequence number (usually 3 or 4 digits) unique within that document
or group.

Example: A high-level system requirement might be SSS-COMM-0001 (“The spacecraft shall support
X Mbps downlink rate”). A derived software requirement in the communications software module
might be SRS-COMM-COMMSOFT-0010 (“The Comm software shall implement CCSDS telemetry
frames for downlink”). This way, by looking at the ID, you can tell where the requirement lives and
roughly what it concerns.

Maintain this convention in requirement management tools or even in spreadsheets. It helps in discus-
sions (“Requirement SRS-COMM-0100 is not met by the current design, what do we do?” clarifies
what you’re referring to).

4.4.6.2. Requirements Traceability and Management

We ensure every requirement is tracked from origin to verification:

e Maintain a Requirements Traceability Matrix (RTM), which often transforms into a Verification
Control Document (VCD), often as a table or a set of linked tables. This matrix maps each
high-level requirement (like system requirements in SSS) to one or more lower-level require-
ments (in SRS or derived requirements) and further to design elements (in design docs) and
test cases (in test plans).

e If the project is small, a spreadsheet can manage traceability. For larger projects, it might be
advisable to use a tool like IBM DOORS, Jama, or even just a well-structured Jira project with
links, depending on client preferences. We have even built internal lightweight tools to track
requirements and their status.

e Each requirement in the RTM has fields: unique ID, description (abbreviated), origin (which
higher-level requirement or use case it is derived from), status (draft, validated, implemented,
tested, etc.), owner (who is responsible), and verification method (inspection, test, analysis,
demo).

e Regularly update this matrix as development progresses. For example, when a test case is
written to verify requirement X, we update the matrix to link X to that test case identifier
and later mark it verified when the test passes in a formal test campaign.

e During design and code reviews, refer to the matrix to ensure no requirements are forgotten.
Conversely, if someone proposes a new feature, we ask, “Which requirement does this sat-
isfy?” If none, it might be out of scope unless a new requirement is added and approved.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 34 of 83

Though it sounds heavyweight, this traceability approach is lightweight and tool-supported not to im-
pede agility. It is aligned with ECSS and NASA guidelines, which mandate bidirectional traceability (you
can trace from requirement to implementation and vice versa). Handling it continuously rather than at
the end isn’t an overwhelming task.

This approach ensures:

e Full transparency and control: At any point, it is clear how much of the system is imple-
mented and tested regarding coverage requirements.

¢ Change management: If a requirement changes or is added, the matrix highlights what
design and tests need updating.

o Simplified verification compliance: When it is time to test, we have ready lists of tests
needed for each requirement, satisfying ECSS-Q-ST-80C and NASA’s expectations for V&V
traceability.

4.5. Testing and Verification

Testing and verification are the primary means by which we ensure the software meets all require-
ments and performs reliably. Follow a multi-level testing strategy integrated with development, mean-
ing testing isn’t a phase at the end but a continuous activity that accompanies coding and a distinct set
of activities for formal verification. NASA’s software engineering requirements [AD4] similarly require
projects to perform unit, integration, and system testing; our multi-level testing approach ensures
compliance with such stringent criteria.

We typically produce two build configurations for the software:

¢ The DEBUG build includes extra checks, logs, and assertions enabled. Used in development
and internal testing (e.g., ELF file). Make sure to keep any other debug-related files like memory
maps, etc. to help analysis. DEBUG builds can be slower because they are build with fewer
compiler optimization levels. Evaluate which compiler flags provide a good balance between
speed and debugging performance (e.g., inlining can mess with breakpoints).

e The RELEASE build is optimized, with debug assertions disabled or reduced, and used for
final delivery. Careful to remove any dynamic verification (see Section 4.5.3) from the code to
avoid accidentally triggering assert statements and causing a system reset. NB: Certain com-
piler optimizations may not be allowed depending on the mission requirement (can impede
patching strategy).

Both builds are based on the same code base and implement the same functionality. Thus, a bug found
in RELEASE can be diagnosed by reproducing it in DEBUG with more diagnostics. This is important
for space: if something goes wrong in orbit (with the optimized build), we must reproduce it on the
ground with debug instrumentation.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 350f 83

The extent of testing (how deep we go into formal methods and how much hardware testing is needed)
is decided early in the project based on criticality and resources. Table 7, which had been produced
for flight software technical documentation, summarizes which types of tests apply in which environ-
ments (e.g., unit tests are easily done in pure software; hardware-in-the-loop tests need hardware).

Table 7: Sample applicability matrix of different testing methods in different execution environments. X = Easily applicable,
(X) = Applicable

[
o
®
-
bo
Q
)
=
%)
=
(o)
=
£
)
[
[e)
O)

Static Verification
Dynamic Verification
Formal Verification
Performance Testing

Unit Tests

igi

| Digital Twin [IP% X X X X X
| spm 0N X X X X ® ®
| QM) B X X X X X
| (P)FM B X X X X

4.5.1. Unit Tests

Unit testing is the backbone of our verification strategy. Each software unit (typically a function, class,
or module) is tested in isolation with a set of unit tests. The goal is to verify that each unit’s logic is
correct for nominal and edge cases. Write adversarial tests, i.e., try breaking the code and don’t try to
make the test succeed. Productivity tools like LLMs can be used to create basic unit tests [RD11].

e Depending on the language, frameworks like CppUTest, catch2, Google Test for C/C++
code, JUnit for Java, etc. can be used. The tests are coded and thus integrated into Cl for
automation.

e Automation: Unit tests run on each commit via Cl. They are meant to be fast (a suite should
run in seconds to a few minutes) to give quick feedback.

e We differentiate white-box vs black-box unit tests:

o White-box unit tests are written with knowledge of the code internals, often by the
developer (e.g., testing internal functions or using dependency injection to force spe-
cific paths). We encourage TDD to write these tests as you write the code.

o Black-box unit tests treat the unit as a “black box,” testing only the public interface
against its specification. These might be written by someone else or later to validate
that the unit meets its requirements.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 36 of 83

e Strive for high coverage in critical modules via unit tests. While 100% code coverage is not
always practical or meaningful, aim to achieve a meaningful level of 70-90% on core algorithms.
Pay attention to covering all branches of critical decision logic.

e Consider parameterized tests and random (fuzz) inputs for robustness testing at the unit level,
especially for parsing or math functions.

e Unit tests often run in a host environment (e.g., x86 Linux), so simulate embedded aspects
where needed, using stubs for hardware access.

The benefit of unit tests is immediate bug detection. If a recent change causes a previously passing unit
test to fail, it is caught in a regression. This drastically reduces debugging time, as issues are detected
close to their source and introduction time.

Finally, Large Language Models (LLM) can assist in the development of unit tests, like Anthropic’s
Claude Code [RD11]. Special care must be taken to ensure that generated code is meaningful and
exercises the code under test properly.

4.5.2. Static Verification

Static verification involves analyzing the source code without executing it to find potential issues.
This is extremely valuable in embedded systems, where specific bugs (like null pointers or overflows)
can be catastrophic but might not easily manifest in tests.

e Compiler warnings as errors: Compile with a high warning level (e.g., -Wall -Wextra in
GCC for C/C++) and treat warnings as errors. This catches many issues (unused variables,
type conversions, etc.).

¢ Static analysis tools, like PVS-Studio, Qodana, Cppcheck, or Clang-Tidy: These tools
analyze code paths and find uninitialized variables or violations of coding standards. Integrate
these into Cl so every commit gets analyzed. If new warnings are introduced, the Cl, a quality
gate, fails, and we require it to be fixed or marked as a false positive with justification.

e Static stack usage analysis: Knowing stack usage is essential for embedded systems (espe-
cially with RTOS tasks having fixed stack sizes). Use static analysis or linker features to deter-
mine the upper bound stack usage of each thread. To make this tractable, avoid recursion and
unbounded stack allocations.

¢ Coding standards compliance: Adhere to standards like MISRA C recommendations and
use static analysis to check compliance (some tools have MISRA checkers). This ensures that
no dangerous type casts, use of goto, direct pointer arithmetic, etc., slip in, which comply with,
e.g., NASA Power of 10 rules for C. You may also want to have a look at JPL’'s C Coding
Standard (found here [RD16]).

e Security/static vulnerability analysis: Though less of a concern for offline embedded
code, still check for things like buffer overflows or injection risks, especially if the software has

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 37 of 83

any interface that processes external input (telecommands are essentially external inputs, so
we treat those parsing routines with care).

By integrating static analysis into the Cl pipeline (Chapter 5 covers this), we ensure every build is
scrutinized. This significantly reduces runtime errors because many are eliminated before the code
runs. It also helps satisfy standards: e.g., NASA’s 8739.8 standard strongly encourages static analysis,
and ECSS-Q-ST-80C mandates static verification be done.

4.5.3. Dynamic Verification

Dynamic verification means runtime checks and tests that catch issues during program execution when
the software is running (especially those related to timing, memory usage, or interactions of multiple
components). You may employ several dynamic verification techniques: Throughout the code, espe-
cially in debug builds, you can use assert() or custom macros to validate assumptions — for instance,
after computing a number to check it’s within an expected range or assert that a pointer returned
from a function is not null before use. These assertions will inmediately stop the program (in debug
mode) if violated, alerting us to a problem. During operations, e.g., during flight (release builds), it is
paramount to either remove them or convert them to error logs/telemetry, depending on criticality
(for critical must-not-fail assumptions, sometimes they can be left active even in flight but handle the
failure by resetting the component or switching to safe mode).

e Error handling paths: Design the software to log it and either recover or go to a safe state
if something abnormal happens. Induce errors during testing (especially integration and system
testing) to ensure these paths work (like unplugging a sensor or feeding malformed data).

¢ Runtime tools: Use tools like Valgrind (for memory checking, if running the code on a PC)
or address sanitizers (ASan, if we can run code with sanitization enabled) to catch memory
misuses like leaks or out-of-bounds at runtime. Thread sanitizers (TSan) can catch data races
during tests for threads and concurrency. Depending on the compiler, not all tools are available
(e.g., when compiling an RTEMS-based system with the rtems-gcc).

¢ Fuzz testing: Use fuzz testing (tools that generate random input variations) to break the
code for inputs like file parsers or communication packet handlers. This is dynamic because it
runs the code with many inputs to see if any crash or misbehavior occurs.

¢ Resource monitoring: In long-running or HIL tests, monitor CPU usage, memory usage,
etc., to spot leaks or performance issues.

e Recovery and restart tests: Test how the system behaves if a process is restarted or an
MCU is power-cycled (to ensure no persistent bad state across reboots).

Dynamic verification complements static analysis — where static might not prove something fully or
doesn’t know actual values, dynamic verification checks catch them in action. A trivial example: static
analysis might not flag a division by zero if it’s not apparent, but a dynamic assert can catch if a denom-
inator ever becomes zero during tests. Formal verification, however, may also catch the division by
zero (see next section).

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 38 of 83

Dynamic verification can also be used, e.g., to ensure the detection of array overflows by adding an
extra byte at the end of an array or after the array inside a struct and using that variable as a guard
with a known pattern, like OXDEADBEEF. Then, at regular intervals, use asserts() to evaluate if that
(otherwise unused) memory location is still unchanged or at the top of the program execution. This
technique has been used extensively when looking for issues during the program execution of STIX
(see Section 8.1).

For safety-critical parts, we may leave dynamic checks in the production code. For example, avionics
software might continuously monitor its outputs; if something goes out of bounds, it triggers a safe
mode. This is dynamic checking, ensuring the system stays within safe operation.

4.5.4. Formal Verification

Formal verification uses mathematical methods to prove the software’s properties. Unlike testing
(which can show the presence of bugs, not their absence), formal methods can guarantee that specific
bugs are not present in all possible executions. Due to the high effort involved, we selectively apply
formal verification to the most critical algorithms or modules.

Approaches we have used:

e Property specification: Formally state what the code should do (e.g., “This function’s result
will always be within this range,” “This routine will always terminate within N steps,” or “No
memory overflow occurs in this module”). This can be done with pre/post conditions and
invariants in the code (using annotations or a formal spec language). Some properties are im-
plicitly defined, in cases like divisions by zero.

e Automated theorem proving or model checking: We have experience with tools like
Stainless (EPFL’s framework for formal software verification on Scala), where we write specific
modules in a subset of a language the tool can handle (Scale in the case of Stainless) and then
specify correctness properties. The tool then tries to prove those properties. In a project with
EPFL, we translated critical C code (parts of the STIX file system; see Section 8.1) to Scala,
used Stainless to prove the absence of runtime errors and certain functional correctness prop-
erties, and then translated it back to C. This gave firm confidence in the file system —and we
found subtle issues that testing hadn’t.

e Formal analysis of state machines: If you are using state machine formalisms (like SDL or
TLA+ for concurrency), you might model a protocol or critical sequence in a formal tool and
verify its liveness/safety properties (e.g., a command handshake will never deadlock).

¢ Absence of runtime errors: Some static analysis tools (like Astree or Polyspace) can prove
the absence of specific runtime errors for C code (standard in the avionics industry). Use such
tools in critical routines to verify no division-by-zero, out-of-bound array access, etc.

Other tools used for program verification are Viper [RD17] and Tamarin [RD18] (though the latter is
more used for security protocol verification).

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 39 of 83

The output of formal verification is often a report that states which properties were proven for which
code. This is great for assurance arguments (e.g., we can say, “The control law is proven stable by
design” or “The memory manager is proven never to leak memory”).

However, formal methods require expertise and effort:

e You need someone who understands formal specifications and can model the problem cor-
rectly.

e The code may need to be written in a restricted subset or annotated heavily.

¢ It can be time-consuming to get complex properties to verify (often an iterative process tweak-
ing the proof or adding lemmas).

Therefore, we apply it where the payoff justifies it: typically, a small piece of highly critical code
(like a scheduler, a core math algorithm for guidance, etc.). Combining tests and static analysis is usually
sufficient and more cost-effective for less critical parts.

One practical outcome is that the code can be treated with high confidence after formally verifying a
module. Test it still, but perhaps reduce the testing needed elsewhere because we trust the formally
verified part (e.g., treat it as a black box with guaranteed behavior).

In summary, formal verification is part of a great toolbox, used selectively to bolster confidence where
traditional testing might not be exhaustive enough and where errors would have a very high impact. It
aligns with the highest levels of integrity in standards like ECSS or DO-178C (which, at Level A, en-
courages formal methods to comply).

4.5.5. Hardware Tests

Hardware testing is crucial because software behavior can differ on real hardware compared to simu-
lations. Timing, memory layout, and hardware peripherals can all cause issues that won’t appear in a
simulated environment.

Our hardware testing approach (often referred to as Hardware-in-the-Loop, HIL):

e If available, use a Breadboard, Engineering Model, or prototype of the actual flight hard-
ware. If not, use development boards as closely as possible (same CPU, similar peripherals).

e Develop automated test scripts to run on the hardware. For example, a Python script on
a PC that interacts with the board via a serial port or JTAG to deploy the software, send test
commands, and read telemetry.

e Many unit and integration tests from a well-through-out Cl can be re-used on hardware.
You might compile the test code to run on the board or wrap tests in special telemetry that
the test script can interpret.

o Specifically test hardware-dependent aspects: device drivers (“Can we read sensor data
correctly?”’), real-time performance (“Does an interrupt meet its deadline?”’), and robustness
(power cycling the device repeatedly, checking for proper startup).

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 40 of 83

¢ Environmental testing: When possible, involve the hardware in environmental tests (ther-
mal vacuum, vibration). The software is exercised during these to ensure, for example, that
boot sequences work at extreme temperatures or that no memory corruption occurs due to
radiation (if we can do radiation testing).

¢ Regression on hardware: You might set up nightly tests for critical systems where the
latest build is flashed onto a spare board and a suite of tests run overnight. This catches issues
like memory leaks (long-duration tests) or rare glitches.

One challenge is limited hardware availability. Often, we have only one or two EM boards, so we can’t
use them for every Cl commit (hence virtualization, Chapter 6, is essential). Instead, we schedule
hardware tests periodically (like daily or for each release candidate build). Another challenge is that
hardware is stateful (e.g. flash memory), and it might be difficult to reset hardware to a known, con-
sistent state. |deally, there are hardware features available to support state resets, e.g. by allowing
externallycontrolled power cycling.

Hardware tests bridge the gap between continuous virtual tests and the real world, increasing confi-
dence that “What we test is what we fly” — a NASA mantra. They also often uncover issues with
hardware interfaces (e.g., a sensor giving unexpected values causing the algorithm to misbehave or a
difference in floating-point precision on the target CPU).

Document each hardware test result and incorporate it into the traceability: e.g., if the requirement
says, “The system shall acquire sensor data at 10 Hz,” have a hardware test that measures that on the
actual board and link that test back to the requirement.

4.5.6. Performance Testing

Performance testing ensures the software meets non-functional requirements such as timing, memory
usage, and throughput, which are vital in embedded systems with constrained resources.

Perform performance testing at multiple stages:

¢ Unit micro-benchmarks: For key algorithms, you might have micro-benchmarks that run
the function with sample data and measure execution time or memory usage. This can be part
of unit tests (e.g., assert that it runs under X milliseconds for Y-sized input).

¢ Profiling on target: Measure CPU utilization of each thread or major cycle on the actual
hardware or a cycle-accurate simulator. Detect and optimize if something is over budget (like
a control loop missing its 50 Hz deadline).

e Memory usage: Track static memory (by analyzing map files) and dynamic memory (by in-
strumenting allocators or using built-in RTOS features to check heap usage). Ensure you have
sufficient margin as per requirement (e.g., no more than 70% of RAM used, so the remainder
is margin for fragmentation or future growth).

¢ Throughput tests: For example, feed the maximum expected data rate through the system
(telemetry packets, images, etc.) and see if any backlog occurs or data is dropped.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 41 of 83

e Power consumption (if relevant): Sometimes software can impact power (e.g., by keeping
CPU at 100%). We might test power usage in different modes.

Performance tests can be integrated into Cl to some extent (especially on a simulator or using QEMU
with instruction counters). But final performance tuning is done on hardware with proper instrumen-
tation.

Results from performance tests are compared against requirements or targets. If there are deviations,
treat them as bugs to fix (either optimize code, adjust the requirement if it is unrealistic, and get
stakeholder buy-in or upgrade hardware if feasible — though in space, that’s rare, and hardware is fixed
early).

Performance testing ties into our quality gates. For instance, if new features are creeping up worst-
case execution time, watch it and take corrective action before it jeopardizes the mission schedule
(finding a performance issue late can require major refactoring; our continuous approach avoids that).

4.5.7. Integration, System, and Scenario Testing

Beyond individual units, we test the interactions of components (integration testing) and the whole
system’s behavior under realistic scenarios (system testing). Scenario testing often involves end-to-end
sequences that the actual system will perform (mission scenarios).

¢ Integration testing: Gradually integrate modules and test their interaction. For example,
test the software’s communication stack end-to-end by sending a telecommand from the
ground software to the onboard software (in a lab setup) and verifying the correct telemetry
response. Integration tests might still be automated and run in Cl (especially with virtual set-

ups).

¢ System testing: Once the entire software stack is integrated on a representative platform,
run system tests, which treat the whole software (and possibly hardware) as a black box to
validate requirements. This could include a nominal mission timeline (boot, deploy compo-
nents, perform operations, etc.) and off-nominal scenarios (component failure simulation to
see if FDIR works).

e Use test scripts and possibly test frameworks (e.g., using EGSE software and hardware to
send commands and verify telemetry).

¢ Scenario examples: A calibration sequence, a science data collection pass, a safe-mode en-
try, and recovery are tested. Larger setups allow for entire mission simulations, like NASA’s
NOS3 [RD14].

¢ Involve domain experts (e.g., ops team members) in scenario testing to ensure it meets
operational needs.

System testing is often formally done during validation phases (e.g., system validation tests) and wit-
nessed by the customer or independent verification teams. Ensure all mission requirements and use
cases have corresponding system tests.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 42 of 83

Traceability: Every requirement from the system requirements (especially those relating to function-
ality or performance) is verified by one or more system tests, which we mark in the RTM or VCD.

It is also advisable to include stress testing in system tests, e.g., continuously running the system for
72 hours to see if any issues like memory leaks or counter overflows occur (important for long-dura-
tion missions).

4.5.8. Regression Testing

Regression testing is not a separate type of testing but rather the practice of re-running all relevant
tests whenever changes occur to ensure new changes haven’t broken anything that worked before.

Our approach to regression testing is:

¢ Automate it in Cl: Every time code is merged, the ClI runs the full suite of unit tests and
often a subset of integration tests on the simulator. This catches regressions immediately (e.g.
if a math library change causes a control test to fail).

e Regular complete test cycles: Schedule full regression test campaigns at key points (e.g.,
before a major release or delivery). This might include re-running all system tests, including
those that are too manual or hardware-involved to run on every commit.

e Baseline comparison: For performance metrics or outputs, it can be helpful to store known
good outputs (baseline data) and compare current test outputs to those. Differences can in-
dicate regressions.

¢ Continuous regression tracking: If a test fails, it is advisable not to merge the code but
to fix it first. For long projects, maintain a dashboard of test results over time.

One good practice is that for any bug found (either during testing or, heaven forbid, in operation),
write a new test case that would have caught that bug and include it in the regression suite. This way,
a specific problem can never reoccur without us noticing.

By the end of development, you will have a comprehensive regression suite that gives confidence for
maintenance updates and software reuse in future projects (with modifications).

4.5.9. Continuous Integration (Cl)

NB: Continuous integration and related topics are so important that we dedicate Chapter 5 entirely
to CI/CD. Here, we give a brief overview in the context of testing to show how it fits into the verifi-
cation strategy.

Continuous integration frequently merges all developers’ changes to a shared mainline, and automated
build and test steps verify each merge. In our framework:

o CIl ties together many of the above activities: When code is pushed, the Cl server
automatically compiles the code, runs static verification (section 4.5.2), runs unit tests (4.5.1),

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 43 of 83

maybe some integration tests (4.5.7) in a simulated environment, and perhaps even package
the software.

¢ CI provides rapid feedback: Developers are alerted within minutes if their change breaks
something. This ensures issues are addressed immediately, not weeks later.

e Treat the CIl status as a criterion for code integration: A change must pass ClI (all
tests green), or it’s not done. This enforces a culture of keeping the building “green” (always
passing). Still, write adversarial tests that try to break the code rather than returning “OK.”

o Configure the Cl to generate artifacts (e.g., compiled binaries, test reports, coverage
reports) archived for traceability. For example, we can later retrieve the exact binary that
passed all tests at CDR.

Notably, the CI pipeline shall be set up to mirror the verification stages of the V-model continuously.
This is like doing a mini-V&V cycle on each commit, significantly reducing the integration effort because
you constantly integrate and verify.

Some specifics on what to do in ClI (which will be expanded in Chapter 5):
e Build in a clean environment (like a Docker container) to ensure no dependency issues.

¢ Cross-compile for the target, then run tests in a simulator (like QEMU for the target
CPU).

e Possibly run hardware tests in Cl if hardware is available and automation is set (often as
nightly due to time).

e Use coverage analysis in Cl to see if a commit drops test coverage (as a quality gate).
¢ Use linting and formatting checks to keep code style in relevant parts consistent.

The Cl system itself is under configuration control (the “Pipeline as code” concept), meaning changes
to Cl scripts are tracked and reviewed as part of our process.

In essence, Cl is the glue that binds your development and testing together, ensuring verification is
continuous, not just a phase. It supports agile (fast iteration) and standards compliance (evidence gen-
eration).

4.5.10. Independent Software Verification

As an additional measure towards software quality, Independent Software Verification (ISV) is com-
monly employed in space software projects to provide an impartial and rigorous assessment of the
software product. ISV involves verification activities conducted by a team independent from the origi-
nal software developers, thereby reducing biases and ensuring a fresh perspective in identifying soft-
ware defects, inconsistencies, or deviations from specified requirements. By performing independent
reviews, formal inspections, static analysis, and dedicated testing, ISV helps ensure compliance with
stringent standards and enhances the overall reliability and robustness of the space software system.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 44 of 83

This practice is explicitly recommended by established standards such as ECSS-E-ST-40C and is rec-
ognized as a best practice within the aerospace software community.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 45 of 83

5. CONTINUOUS INTEGRATION AND CONTINUOUS DELIVERY (CI/CD)
FOR SPACE SOFTWARE

Continuous Integration and Continuous Delivery (CI/CD) form the backbone of modern software
development practices, enabling teams to detect issues early and deliver updates quickly and reliably.
In the context of embedded space systems, CI/CD must be carefully tailored to handle cross-compi-
lation, hardware-in-the-loop testing, strict reliability requirements, and the traceability demands of
space industry standards. This chapter provides a detailed look at implementing CI/CD in our projects,
complementing the framework described in Chapter 4 by automating and enforcing many of its prac-
tices.

5.1. Overview

Continuous Integration (CI) involves frequently merging all developers’ code changes into a central
repository (often multiple times per day). Each merge triggers an automated build and test process.
The goal is to find and address integration issues (like conflicting changes or failing tests) as early as
possible. In effect, Cl turns integration — which used to be a big bang at the end of a project — into a
routine, incremental activity.

Continuous Delivery/Deployment (CD) extends Cl by automatically deploying (delivering) the
integrated changes to an environment (or releasing them to users) after passing the pipeline. In the
case of flight software, “deployment” might mean flashing to a test device or packaging a flight software
build for delivery to a spacecraft or another team.

For an instrument software team, a well-designed CI/CD pipeline yields several benefits:

e Early and Continuous Verification: Automated builds and tests provide rapid feedback
on each code change, helping to detect integration issues, requirement mismatches, and re-
gressions early when they are easier and cheaper to fix. This supports ECSS-Q-ST-80C’s prin-
ciple of iterative, multi-level verification.

¢ Reproducible, Controlled Builds: By running in isolated environments (e.g., Docker),
pipelines ensure identical results for identical inputs, eliminating host-specific inconsistencies
and supporting configuration control.

¢ Increased Reliability Through Automation: Replacing manual steps (e.g., compiler
setup, packaging, signing) with automated scripts reduces human error and enforces consistent
execution, which is critical for complex embedded systems.

¢ Traceability and Compliance: CI/CD systems generate detailed logs that map code com-
mits to test results and requirements. This facilitates automatic traceability reporting and sup-
ports compliance with ECSS and NASA verification traceability requirements.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

5.2.

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 46 of 83

Rapid Iteration and Collaboration: Developers can integrate more confidently, knowing
ClI catches regressions. Frequent merges promote collaboration, reduce integration conflicts,
and accelerate development cycles.

Operational Readiness: The software always remains in a deployable state. While actual
spacecraft deployments occur at defined milestones, this readiness enables fast reaction to
late-breaking issues and supports frequent internal demos or system tests.

Process Transparency and Insight: Cl dashboards provide real-time visibility into building
health, test coverage, and compliance metrics, fostering team accountability and informed pro-
ject management.

Embedded CI/CD Considerations

Unlike pure cloud or app software, embedded CI/CD faces:

5.3.

Hardware dependencies (you can’t spin up a satellite in the cloud to test on; though, having
said that, clever cloud virtualization services are becoming available for platforms). Ve address
this with virtualization (Chapter 6) and a careful HIL testing strategy.

Cross-compilers and toolchains must be managed so that a consistent environment includes
GCC for ARM or LLVM for RISC-V, etc. As discussed later, this can be handled via container-
ization.

Hardware tests have long test times. Mitigate this by splitting fast tests (run on each commit)
into slow tests (nightly or on demand).

Test the reliability of your tests because flaky tests can reduce confidence. Invest in making
tests deterministic, using simulators that you control.

Consider the pipeline environment’s security. For example, if the code is ITAR/export con-
trolled or proprietary, you might be unable to use public cloud Cl and must rely on self-hosted
solutions.

Common Challenges and Mitigations

Initial setup effort: Setting up a robust CI/CD for embedded projects can be non-trivial. It
requires writing build scripts, Docker images, possibly hardware interfacing scripts, etc. Miti-
gate this by maintaining templates and scripts from past projects (a Cl “starter kit”).

Maintenance: Cl pipelines can grow complex and slow if not managed. Continually refine
the pipeline (as noted in Chapter 4, treating it as its product to improve).

Flaky tests: Tests that sometimes fail due to timing or environmental issues erode Cl trust.
Test results must be made deterministic. In the worst case, quarantine flaky tests so they don’t
block the pipeline but get flagged for someone to fix.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 47 of 83

Resource usage: Running a complete pipeline for every commit can be resource-intensive
(many CPU hours). Optimize by using caching (so rebuilds are faster) and scaling runners.

Cultural change: Team members must adapt to writing tests and relying on the pipeline.
Some may be initially resistant if not used to it. Address this via training and showing the
benefits (and sometimes by mandate: “The pipeline must be green to merge”).

5.4. Streamlined and Reproducible CI/CD Environment

A key prerequisite for effective CI/CD is having a reproducible, automated build and test environment.

Any developer or Cl runner can set up the environment and get identical results. We achieve this

through cross-platform build systems, containerization, and scripting of all processes.

Cross-Platform Build Tools: Use portable build systems (like CMake for C/C++, Meson,
etc.) to generate platform-specific builds. This allows the software to be built on various host
OS (Windows, Linux, Mac) and to target different architectures (via toolchain files). For ex-
ample, CMake scripts can produce a Linux x86 build for host testing and an ARM Cortex-M
build for a flight from the same source. This addresses ECSS-E-ST-40C guidance to maintain
portability and avoid environment-dependent errors. It also means developers can reproduce
Cl builds locally by invoking the same CMake commands.

Containerization: Encapsulate the entire build environment in a Docker container (or sim-
ilar container technology). Create a Dockerfile that installs the cross-compiler, specific library
versions, Python (if needed for scripting), etc. The Cl pipeline then pulls/builds this container
and runs the build inside it. This ensures the environment on the Cl server is the same as that
of a developer’s machine using that container. If a new dependency is needed (say, you added
a new library), update the Dockerfile (which is in version control), and everyone gets it. Also,
by versioning the Docker image (tagging it with a version or commit hash), you can fulfill
configuration management expectations of ECSS-Q-ST-80C, even if the build environment is
under configuration control.

Hardware Emulation & Simulated Environments: As detailed in Chapter 6, set up em-
ulators like QEMU in the Cl environment to run the compiled binary in a simulated target
environment. For example, after cross-compiling, the Cl launches QEMU with an emulated
CPU/board to execute integration tests. Also, simulate peripherals where possible. This allows
early detection of issues specific to the target (like endianness or alignment problems) as part
of Cl. It’s not full HIL, but it covers a lot of ground with zero hardware. Table 7 shows that
virtualization gets an “X” for many test types precisely because of this capability.

Automation and Orchestration: All Cl steps are scripted (in Jenkinsfile, GitHub Actions
YAML, or GitLab Cl YAML, etc.). There is no manual step. For example, a typical job in our
pipeline might be:

1. Checkout code

2. Set up Docker (or use a pre-built Cl image)

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 48 of 83

3. Run cmake .. -DCMAKE_TOOLCHAIN_FILE=... for target
4. Run cmake --build . to compile

5. Run static analysis tool script

6. Boot QEMU and run tests

7. Archive results (binaries, logs)

8. If all is good, mark build successful.

Everything above is defined in code, so it’s repeatable. If a new developer joins, you can hand
them a README that says, “Install Docker and run these two commands to replicate the CI.”
That quick start lowers onboarding time.

¢ Hardware Interface Scripts: Include scripts to interact with hardware for pipelines that
involve actual hardware testing (say nightly). For example, you might use a lab PC connected
to the board via USB. A Python script uses OpenOCD or ST-Link to flash the firmware and
then uses a serial port to communicate and run tests. Keep these scripts in the repository as
well. Over time, you will accumulate a library of such scripts (e.g., a power switch control
script to power-cycle boards, a script to measure current from a connected multimeter, etc.).
By automating hardware interaction, you can include hardware in Cl (even if not every commit,
it could be scheduled) and avoid manual testing errors.

e Secret Management: The Cl sometimes needs secrets (maybe credentials to deploy arti-
facts to a server or access a proprietary compiler). Never store secrets in code! Also, keep
your Git history clean with secrets. NB: Should you ever accidentally commit a secret (or even
public staging or testing APl endpoints or any other information that the public should not
know, use tools to clean your history. Some platforms, like GitHub, have scanners to help you
find leaked secrets and confidential information, like BFG Repo-Cleaner [RD15]). Instead, in-
ject these securely at runtime using CI’s secret store (like GitHub Actions Secrets, GitLab ClI
variables, or Hashicorp Vault integration). This ensures that our repository can remain public
or shared without leaking sensitive info and meets security best practices.

¢ Documentation of Cl Setup: Maintain a “CI/CD guide” or integrate it into your Configu-
ration Management Plan documentation. It describes how the pipeline is structured and how
to run it locally. This serves both the team and any external auditors or new team members.
It also aligns with ECSS-E-ST-40C, which expects that development infrastructure configura-
tion is documented and controlled.

By investing in this reproducible environment, you essentially “infrastructure as code” your develop-
ment process. Newcomers can get the environment up quickly, and the Cl can run reliably on different
runners (self-hosted or cloud). You also gain the ability to resurrect any past build. Since you have the
container (by version) and the code, you can recreate an old build even years later, which might be
needed for anomaly investigation on orbit.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 49 of 83

5.5. CI/CD Pipeline Workflow for Embedded Systems

With the environment in place, a CI/CD pipeline typically follows an extended version of the classic

software pipeline, adding steps specific to embedded development. A generic workflow is:

1.

Code Commit & Merge: A developer pushes code to a feature branch. When ready, a pull
request is opened to merge to the main (or main development) branch. The CI pipeline trig-
gers on the PR (and again on merge). Adopt a branching strategy (like GitFlow or trunk-based)
to isolate development until checks pass. Only code that has passed all pipeline stages and
review gets merged (quality gate).

Automated Build & Code Analysis: The pipeline compiles the code using the cross-com-
piler inside the container environment. It is advisable to build multiple configurations (Debug,
Release). After building, run static analysis tools (like clang-tidy, cppcheck, and MISRA checker).
Any issues cause pipeline failure with a report (for developers to fix). This step ensures you
enforce coding standards right after coding and catch easy-to-miss bugs. It directly maps to
ECSS-Q-ST-80C requirements for static verification and coding rules compliance. Many tools
available can analyze the code during this step, like SonarCube or GitHub Dependabot (which,
in fact, runs in parallel to the CI/CD pipeline directly on your code — make use of those tools).

Unit and Integration Testing (Software-in-the-Loop): Next, the pipeline runs the
suite of unit tests (which don’t need the target hardware) on the built binaries (some might
run on a host or an emulator). Then, run integration tests that can be executed in a simulated
environment, for example, using a QEMU-emulated board or a special test harness. Gather
code coverage during these tests (using gcov or similar). The pipeline fails if any test fails or
coverage drops below the threshold. This step gives you confidence that the software logic is
correct and meets the requirements (since tests are derived from the requirements). It also
aligns with standards: e.g., ECSS-Q-ST-80C expects verification at unit and integration levels
with coverage analysis.

Package & Deploy to Emulator: If basic tests pass, take the compiled artifact (e.g., a firm-
ware .elf or .bin) and deploy it to a virtual platform environment. For example, spin up a QEMU
instance that emulates the satellite’s CPU and possibly some peripherals. If possible, run a
series of higher-level tests — maybe even the whole system test suite — in this emulator. For
flight software, you might boot the RTOS and run a scripted sequence: send a telecommand,
get a response, check a sensor simulation, etc. This step verifies that the software can run on
the target architecture and handle realistic scenarios within Cl. It’s like a digital twin test run
each time. If issues are found here (e.g., it crashes on startup in QEMU), the pipeline fails, and
you can debug the low-level issues. This step is unique to embedded projects and is very
powerful if set up (Chapter 6 covers how it can be done with QEMU, TASTE, etc.). NB: Invest
time designing a good end-to-end debugging setup, e.g., using GDB!

Hardware-in-the-Loop (HIL) Testing (as applicable): Not every pipeline run will do
this (due to hardware availability), but you might have a stage that waits for a hardware slot
(maybe nightly or on a special runner with hardware attached). This stage would load the new

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 50 of 83

build onto an actual board or testbed and run a regression test suite. If you include this in ClI,
you should mark it as manual or scheduled (not every commit, but every night or merge to
main). Failures here indicate hardware-specific problems. While not all projects can have this
(some hardware can’t be automated easily or is too scarce), regularly plan for at least one
round of automated hardware testing.

6. Results & Reporting: Logs and results are recorded at each stage. The Cl aggregates these
and can even produce summary documents. For example:

o A testreport (perhaps in JUnit XML format or a custom dashboard).
o A coverage report (which files have low coverage).
o Static analysis report (list of warnings).

o If all stages pass, the pipeline can automatically create a release artifact. This could be
a firmware image zip with a naming convention (including git hash and build number),
and maybe even push it to a repository or storage (so that you will have an archive of
every “green” build).

o If any stage fails, the pipeline immediately flags it (red status) and notifies developers
(via email or chat integration).

o Also integrate requirement traceability: e.g., your test cases can be tagged with re-
quirement IDs, and the pipeline can generate a matrix of requirements vs test results,
which is excellent for proving compliance in reviews.

This workflow ensures that integration problems are caught early and continuously. In essence, try to
constantly exercise the right side of the V-model (verification and validation) within minutes or hours
of changes rather than waiting for designated times. This continuous verification approach keeps the
project compliant and shippable. It fully aligns with ECSS-E-ST-40C’s recommendation of iterative
testing throughout the lifecycle and NASA’s [AD4] focus on continuous risk management.

5.6. Integrating CI/CD with Project Workflows

For CI/CD to deliver maximum value, it must be part of the team’s daily routine and the project’s
overall systems engineering approach, not a parallel process. Here’s how you can integrate CI/CD into
our workflows and project management:

¢ Alignment with V-Model & Reviews: In Chapter 4 we discussed formal reviews (like PDR
and CDR). Use CI/CD as evidence to support those reviews. For instance, by CDR, you might
extract from Cl a report showing that all requirements have at least one passing test case,
proving verification progress. You might also freeze a build at CDR and present the Cl artifact
of that build as the “CDR delivery.” Cl outputs like coverage reports and static analysis trends
can show improved quality. This way, CI/CD isn’t just a dev tool; it’s part of the formal quali-
fication data.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 51 of 83

e Continuous Risk Management: Treat persistent Cl issues as risks. For example, suppose
a test is flaky or fails repeatedly. In that case, it indicates an underlying uncertainty (“Is there a
design flaw?”, “Is a requirement not understood?”, “Is resource margin too low?” etc.). In line
with NASA [AD4] emphasis on risk management, log these in your risk register and ensure
the team addresses them. Cl can even provide metrics that feed into risk analysis, like “Module
X always has lower test coverage — the risk of insufficient testing.”

o Developer Workflow Integration: Encourage developers to run parts of the Cl pipeline
locally before pushing. Since they have containers and scripts, a developer can do “docker run
your_image make test” to catch issues. Also, you could set up quick test targets, like “make
quick_test,” that run a fast subset (e.g., build and run tests on a native platform) so they catch
apparent mistakes. Some teams integrate Cl with IDEs (like running static analysis on file save,
etc.). Keep it simple with a rule: don’t push code that you expect will break the build. If the
build breaks, fixing it is a top priority (no new features until green). Over time, developers
internalize the Cl checks.

e Feedback & Continuous Improvement of Cl: Gather team feedback on the pipeline. If
it’s too slow, improve it (e.g., more parallel jobs, better caching). If false positives happen in
static analysis, tune or suppress them responsibly (with justification in code). Set goals like “Cl
must finish in under 30 minutes” and “Keep master green 100% of the time”. Track metrics
such as average build time, most extended wait, success rate, etc. Many CI tools have dash-
boards that can be displayed on a monitor in the office or team chats. It gamifies quality — e.g,,
if coverage goes down, someone will notice and ask why. ECSS’s Agile Handbook [RD1] even
suggests tracking test “pass” trends.

e Documentation and Handover: The Cl pipeline is documented so everyone knows how
to run builds if the project is handed over to a different team or operations. This becomes
part of the project’s technical baseline. It’s essential for long missions; maybe a patch is needed
five years later. With your Cl documentation and preserved environment, any future main-
tainer can rebuild the software precisely as you did, reducing the risk of mistakes.

5.7. Best Practices and Lessons Learned in CI/CD

Based on our experience and industry lessons (as reflected in ECSS’s Agile Handbook [AD1] and other
sources), here is a checklist of CI/CD best practices for embedded projects:

o Start CI Early: Set up a simple CI pipeline from the project’s inception. Even if initially it just
builds the code and runs one test on a simulator, it forces you to structure the project for
automation. Incrementally expand it. This also surfaces integration issues when they are easiest
to handle (early).

e Keep Builds Fast: Developers will shy away from ClI if each run takes hours. Optimize the
pipeline:

o Use ccache or similar to cache compilation results between runs.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 52 of 83

o Build only the changed components (split builds into multiple jobs, possibly).
o Run tests in parallel (most Cl systems allow multiple executors).

o If you use Docker, cache the Docker layers for dependencies so you don’t rebuild
them each time. A rule of thumb: unit tests + build under 10 minutes for a typical
commit. Longer-running tests can be less frequent. VWhen pipelines are slow, develop-
ers begin to merge less often, which hurts integration.

o Run a subset of tests during development, and the full set on an asynchronous sched-
ule. This way, common bugs are found quickly during development, but rare bugs are
still found with additional latency.

Prioritize Reproducibility: If a developer or auditor cannot easily run the build and tests
on their machine, it’s a red flag. Ensure a one-command setup (like “./setup_env.sh” to get
Docker and run tests).

Automate Testing at All Levels: Incorporate unit, integration, system (simulated), static
analysis, and maybe property-based tests into Cl. For example, if you have a requirement to
“process telemetry packet correctly,” write an integration test feeding a sample packet and
checking output, and include that. If you have a requirement regulating code complexity, en-
force a static metric. ECSS-Q-ST-80C requires a strategy for each test level — ensure each is

represented in Cl, even at different frequencies.

Embrace Simulated Environments: As Chapter 6 details use simulators heavily. Have at
least one job that runs the software in an emulator on each push. It catches integration issues
sooner and reduces dependence on hardware (which may be limited). This would have saved
us in a project where the hardware wasn’t ready for a long time; we could have kept developing
and testing in QEMU, and things mostly just worked when the hardware finally arrived. Sadly,
the first development team did not invest in an emulated environment (see Section 8.1).

Implement Quality Gates: Define the pipeline’s clear pass/fail criteria beyond “tests pass.”
For example:

o No increase in static analysis warnings.

o Code coverage is not decreasing (or requirement coverage is 100% for new features).
o Memory leak check must pass.

o Timing tests within limits.

Blame-Free Culture for Failures: A failing pipeline is not a personal failure; it’s the process
working. Promote a culture where fixing a red build is the team’s collective priority, and no
one is “at fault” — the goal is product quality. This is important to keep morale high and avoid
hiding problems. Managers should reinforce this by praising the quick recovery from red to
green rather than blaming why it went red.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 53 of 83

¢ Pipeline as Code & Versioned: Keep the Cl configuration in the repository (most modern
ClI does this by design, like “.gitlab-ci.yml” in the repo) and subject it to code review. This
means any team member can propose improvements to Cl via the same PR process. It also
means changes to CI (like adding a new job for a new test tool) are tracked.

¢ Archive Results and Artifacts: For critical builds (like a build that goes to a formal test or
the spacecraft), archive all logs and artifacts. Store them in an artifact repository (like Nexus
or as attachments in a ticket). This allows post-mortem and root cause analyses if something
goes wrong in the mission — you can retrieve the exact binary and test logs that went with it.
ECSS standards emphasize the configuration of delivered software. In our STIX flight software
project, we were able to decompile an old binary to evaluate what potential root causes an
event may have had.

e Security in Cl: Use the least privilege for Cl runners. If using cloud Cl, ensure credentials
are secure. To avoid code exposure, you can use self-hosted runners on an internal network
for mission code. Also, ensure the Cl doesn’t accidentally deploy secrets (you can scan logs to
ensure the scripts don’t print secret values).

Adhering to these practices makes a CI/CD pipeline a powerful tool for automating building and testing
and enforcing quality and reliability. It’s like having an additional team member (an automated one)
who is tireless and pedantic, checking every detail every time.

In summary, CI/CD for embedded space software enables a project to be both fast and right — achieving
the reliability expected in space missions without sacrificing the agility and speed of modern develop-
ment cycles. It allows you to sustainably meet rigorous standards (ECSS, NASA) by baking compliance
into everyday workflow rather than treating it as separate paperwork.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 54 of 83

6. VIRTUALIZATION AND PLATFORM SIMULATION

Testing space software on actual hardware can be challenging due to limited hardware availability, high

costs, and difficulty recreating ground space conditions. Virtualization and platform simulation provide

powerful solutions by creating virtual models of the hardware and environment in which the software

can run. This chapter details best practices for using virtualization in embedded space software devel-

opment, complementing the CI/CD practices from Chapter 5 and fulfilling verification needs early in
development (as encouraged by standards like ECSS-E-ST-40C and ECSS-Q-ST-80C).

6.1. Purpose and Benefits

Virtual platforms (or virtual testbeds) are software representations of the target hardware (and some-

times even the environment or other systems) on which the flight software runs. By using virtualiza-

tion, teams can:

Start software development early: You can begin developing and testing software before
the actual hardware exists. For example, if a new test board is only available in six months,
using an emulator allows the software to progress.

Run tests at scale: With virtual platforms, you can run many instances in parallel (e.g., doz-
ens of virtual satellites) or overnight tests, something impossible with a single physical board.
This vastly improves testing throughput and regression testing. It also allows many developers
to code and test in parallel without waiting on a hardware board they may need to share.

Inject faults and edge cases safely: You can simulate sensor failures, extreme data rates,
or invalid inputs in a virtual environment without risking hardware damage. This is great for
testing fault handling (like how the software reacts to a failed component) or stress tests.
Maybe you want to know how your system deals with suddenly dying flash cells or a burst of
single event upsets in your memory.

Integrate into Cl pipelines: As seen in Chapter 5, virtualization allows automated tests on
each commit. You can include system-level tests in Cl by running the software on a virtual
platform within the pipeline.

In short, virtualization is a force multiplier for testing and development, improving feedback speed and

software quality. Recognizing this, space standards and best practices endorse simulation:

ECSS-Q-ST-80C explicitly lists “model simulation” as a verification technique to be used where
possible (to verify requirements cost-effectively).

NASA missions frequently develop high-fidelity simulators (digital twins) for verification and
mission rehearsal. For instance, a NASA JPL project used a testbed called “Software
Testbench," essentially a virtual spacecraft for continuous testing.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 55 of 83

6.2. Levels of Simulation and Fidelity Trade-offs

There are different levels of fidelity in simulation, each with trade-offs between accuracy and speed/ef-
fort:

¢ Instruction-Level Emulation: Tools like QEMU (open-source), T-EMU or TSIM emulate
CPUs and allow integration of virtualized hardware components, like memory or other de-
vices. This means you can run the actual compiled binary as-is.

Pros: reasonably high fidelity for CPU and basic peripherals, catching low-level issues (e.g.,
alignment, endianness, OS context switches).

Cons: needs a model of the board and is slower than functional simulation.

We used QEMU, e.g., to emulate an ARM Cortex-M board, running our RTOS and application,
which lets us test the whole software stack in Cl. TSIM is used for LEON (SPARC) processors
typical in ESA instruments, like STIX (see section 8.1), to do similar things.

¢ Functional Simulation (Stubs/Mocks): Instead of emulating hardware, simulate specific
components. For instance, write a function that generates synthetic sensor data for testing
algorithms instead of an actual sensor driver. Or simulate a bus with a task that sends messages
to the software. This doesn’t run the actual binary on a simulated CPU, but instead runs a
specialized configuration of the function under test with mock interfaces on a developer ma-
chine.

Pros: more straightforward to implement, very fast (no need to simulate every instruction).
Cons: might miss issues that would occur during real integration (timing, concurrency).

We use this for testing logic in isolation, e.g., testing the control algorithm by feeding it rec-
orded sensor inputs via a harness program without involving the actual RTOS or hardware
drivers.

¢ Full System Digital Twins: These are high-fidelity simulations of entire spacecraft or sys-
tems, often including physics. For instance, a simulator that not only runs the flight software
but also simulates the spacecraft attitude dynamics, orbit propagation, and environment (sun
sensors, magnetometers, etc., giving realistic signals).

Pros: can accurately validate end-to-end mission scenarios (almost like a dress rehearsal).

Cons: highly complex and heavy — often separate big projects to develop these, and they might
run slower than real-time or require HPC resources.

You might typically see these at big space agencies for mission validation. You might not build
a full twin for smaller projects, but you could simulate a few key environmental aspects (like
sensor noise models).

Choosing the right level: Use the simplest model for the test objective. For example, suppose you
are testing a data handling algorithm. In that case, you don’t need a full CPU emulator, but you could

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 56 of 83

call the algorithm in a simple program with test inputs (functional simulation). If you want to test the
integration of our software with an RTQOS, then an instruction-level emulator is appropriate. Reserve
full digital twin usage for final system validation or specific analyses.

Also, mix levels: early in development, functional sims for speed; later, run some tests on the QEMU
emulator for realism; and for final validation or debugging weird issues, maybe run on a high-fidelity
simulator or actual hardware.

Example trade-off: To test compliance of a software telemetry implementation, you could initially
simulate an instrument sending packets to the communication handler by feeding crafted packet bytes
(functional sim). This quickly verifies logic for framing, etc. Later, you run the same test on QEMU with
the software reading from a simulated UART to ensure the byte-by-byte handling and interrupts work
(instruction-level). You likely don’t need a complete spacecraft simulator for that particular feature.

6.3. Integration in Development Workflows

We integrate virtualization deeply into our workflows:

e During Development: Developers often run the flight software on their PC using QEMU
or even a high-level simulator to do quick checks. Make targets or scripts like
“run_in_gemu.sh” to make this easy. This avoids needing a development board on every engi-
neer’s desk; they can test most things virtually (and we reserve boards for when hardware-
specific issues need attention).

e CI Pipelines: As covered, virtualization is used in Cl for automated testing on each commit.
Set up at least one job for “Software-In-the-Loop” (SIL) testing. Over time, add more scenarios
to this as you develop them.

¢ Continuous System Integration: Maintain a virtual “flat satellite” where your software
and possibly other components’ software (like payload or ground segment simulators) run
together. For instance, using containers or VMs, simulate a ground station sending telecom-
mands to the virtual satellite software and getting telemetry back, maybe even processing it
with a ground software component. This helps test interfaces between teams without requir-
ing both to have hardware in the loop.

¢ Operations Rehearsal & Debugging: Later in the project, operations teams might use the
software simulator to practice procedures or to verify telecommand sequences. If an anomaly
happens on an actual spacecraft, engineers can try replicating it in the virtual platform to in-
vestigate (assuming the simulation fidelity is high enough for that scenario).

¢ Reuse across projects: Treat models and simulation setups as assets. For example, if you
have modeled a generic AOCS (Attitude and Orbit Control System) sensor in one project,
reuse it with minimal tweaks in another. This library of simulation components grows and
makes future virtualization easier.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 57 of 83

Essentially, the virtual platform becomes a core part of the “Software Verification Facility” —a concept

some agencies formalize (e.g., having a reference facility where software is tested extensively in simu-

lation before going to the actual hardware).

6.4. Limitations and Validation Strategy

While virtualization is powerful, it’s not a panacea. Remain aware of its limits:

Timing differences: An emulator might not reproduce exact real-time timings (e.g., instruc-
tion execution times, cache behaviour, interrupt latencies). Race conditions or performance
issues might not appear until you run on real hardware. You may mitigate this by doing hard-
ware tests and artificially constraining or randomizing timing in simulation (for example, adding
random delays in simulated interrupts to try different timings).

Peripheral fidelity: Simulating complex peripherals (like RF radios or high-speed DMA con-
trollers) is hard. Our tests might bypass those, by stubbing them, or use simplified models.
Thus, we must still test the real integration with those devices when the hardware is available.

Partial coverage of physical phenomena: Unless explicitly modeled, a digital twin might
simulate some physics (like orbital motion) but not others (like radiation effects or thermal
noise). You cannot rely on simulation alone for things like “Does the sensor work in a vacuum
at -20° C?” that need physical testing.

Simulator bugs: Simulators themselves can have bugs or incorrect models. Thus, when
something odd happens, also question, “Could it be the sim?” and validate the simulator by
cross-checking with hardware results for a set of test cases.

Our strategy:

Use virtualization for what it’s best at (functional logic, early integration, non-intrusive test-
ing).

Gradually introduce more accurate hardware tests for things where virtualization might
be weak (timing, device drivers).

Validate the simulator itself. Once the hardware is available, run known tests on both and
compare outputs. If they differ, improve the sim or be aware of those differences.

Document assumptions of simulations. For example, if our power system is not simu-
lated for a test, we note that no one assumes we validated a power dropout scenario when
we didn’t.

We often layer tests:

1.

Virtual tests run on each commit (fast, broad coverage).

2. Daily or weekly hardware tests run key cases (slower, limited by hardware).

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 58 of 83

3. Formal qualification tests on hardware in the final phase (slow, thorough).

The combination catches most issues.

6.5. Summary of Virtualization Best Practices

To conclude the virtualization chapter, here are best practices to consider:

e Leverage Open-Source Tools: QEMU is our go-to for CPU/board emulation (it supports
many architectures). Contribute device models if needed for your boards or use ones provided
by vendors. For higher-level simulations, use frameworks like TASTE (which allows co-simula-
tion of components) or even Unity/Python to visualize scenarios.

¢ Integrate with Cl: As stated, ensure the simulation is part of automated testing. On each
commit, run at least one scenario virtually. This also provides the virtual platform is always up-
to-date (if code changes, our simulation adapters might need updating, and CI catches that).

¢ Maintain a library of models: Build a collection of simulated devices and environments
(sensor models, actuators, etc.). For example, an extensive library of PUS-C models of telem-
etry packets in ASN.1 [RD12] feeds into a tool that generates code and a simulation to pro-
duce packets (as in our turn-key protocol case study). Reuse these to avoid redoing work.

¢ Know when to stop simulating: Identify tests that must be on real hardware, and don’t
spend excessive time trying to emulate those that are easier to test on real hardware. For
example, don’t simulate the exact thermal noise on an ADC if you can test the code with
recorded data from a lab thermal test.

¢ Use Digital Twins for operations: If resources allow, involve the operations team in build-
ing a high-fidelity simulator (digital twin) that can run parallel with the mission operations. This
can be invaluable for training and anomaly resolution (e.g., the Orion capsule’s flight software
had a digital twin for the ground to practice on [RD10]).

¢ Document simulation configuration: Just like code, treat the configuration of simulations
(what version of QEMU, what models loaded, etc.) as part of your baseline. If someone reruns
a simulation a year later, results should be comparable (given the same seed inputs, etc.).

e Simulate failures and stresses: Proactively use the simulator to push the software. Inject
out-of-spec inputs, simulate sensor freezes or random resets, etc., to see how the software
handles them. This often reveals resilience issues. You can simulate some things you can’t do
easily on real hardware, like simulating bit-flips.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 59 of 83

7. MODEL-BASED SYSTEM ENGINEERING (MBSE) FOR EMBEDDED
SPACE SOFTWARE

Modern space missions are increasingly complex, with tight integration between hardware and soft-
ware and rigorous interface definitions. Model-based System Engineering (MBSE) is a methodology for
managing this complexity using formalized models rather than traditional document-centric ap-
proaches. Regarding software quality, MBSE offers benefits in requirements clarity, design consistency,
and automated generation of artifacts (like code or test cases). This chapter provides an overview of
MBSE concepts and how we apply them in our software projects, ensuring strong links between system
models, software implementation, and verification.

7.1. What is MBSE?

MBSE refers to using digital models to support system specification, design, analysis, verification, and
validation. Instead of writing extensive textual documents that describe the system, MBSE encourages
creating interconnected graphical and/or textual models that capture all aspects: requirements, behav-
ior, architecture, data, interfaces, etc.

Key ideas in MBSE:

¢ Central System Model: There is a single source-of-truth model (or a set of integrated
models) that all stakeholders contribute to and use. This model can be visual (diagrams) and
semantic (machine-readable).

¢ Multi-View Consistency: Different views (e.g., a functional flow, a physical component di-
agram, a state machine) are all part of the same model, ensuring consistency with each other
through construction or automated checks.

¢ Executability: Some MBSE tools allow you to execute or simulate the model (for example,
run a state machine or generate a sequence diagram from a scenario) to validate behavior
early.

e Traceability built-in: Requirements can be linked to model elements, and model elements
can be linked to each other and test cases. The model repository effectively maintains the
traceability you would otherwise do in documents or spreadsheets.

MBSE uses notations and languages such as SysML (Systems Modeling Language), UML, AADL (Archi-
tecture Analysis & Design Language), and SDL (Specification and Description Language), which are
often supported by tools like Capella [RD3], MagicDraw, Enterprise Architect, etc.

7.2. Relevance to Space Systems

For embedded space software and satellite missions, MBSE provides several concrete advantages:

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 60 of 83

¢ Clear definition of interfaces: Space systems involve many interfaces (between onboard
subsystems and between spacecraft and ground). Using MBSE, you create interface models
that precisely define data exchanged, timing, protocols, etc., in a unified way. This reduces
team miscommunication (e.g., the software expects a sensor to send data in one format, but
the hardware sends another —a model would catch that discrepancy).

e Traceability from mission objectives to code: The model allows for tracking high-level
mission objectives (like “The satellite shall provide X data. ") down to system functions, soft-
ware requirements, and code or simulation elements. This is aligned with ECSS and NASA
expectations for end-to-end traceability, and MBSE tools often provide built-in trace matrices
or queries to obtain this information.

o Early design validation: The team can validate system behavior before any code is written
or hardware is built using executable models or simple simulations (like state machines or
functional chains). For instance, check that the power subsystem model can support the duty
cycles of the payload as modeled.

¢ Improved multi-discipline communication: Space projects have system engineers, soft-
ware engineers, mechanical engineers, thermal engineers, etc. A well-done system model (es-
pecially using SysML or Capella with the Arcadia method) creates a common language for these
disciplines. For example, the system engineer can see how software components are distrib-
uted and communicated, and software engineers can see how their part fits into the bigger
picture (and what the hardware expects).

Space agencies have recognized these benefits:

e ESA promotes MBSE and provides tools like TASTE [RD2] (which integrates AADL, SDL, and
ASN.1 modeling for embedded systems) to streamline development.

e NASA has used MBSE on projects like Orion [RD10] to integrate flight software design with
the overall vehicle models.

We incorporate MBSE proportionally to project needs, mainly to generate end-to-end packet services
(see Section 8.5).

7.2.1. Practical Application in Software Projects

In practice, MBSE in our software projects often involves a combination of system-level modeling,
interface definition, and code generation:

¢ High-Level System Modeling with Capella (Arcadia): You can use Capella [RD3], an
open-source MBSE tool for system and architecture modeling. Following the Arcadia method-
ology, you define:

o Operational scenarios (how the system is used in various modes).

o Functional breakdown (functions the system must perform and how they interact).

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 61 of 83

o Physical architecture (subsystems, equipment, software components, and connec-
tions).

o Interfaces between components (data flows).

Capella provides a graphical interface to do this. We can use Capella for projects where we
must design interactions between multiple software and hardware components. The benefit is
that once the model is built:

o It serves as a blueprint that both software and system engineers can refer to.

o It ensures we don’t forget any components or interactions (the tool can check com-
pleteness).

o Changes in architecture (say we split a component into two) are easily updated and
ripple through diagrams.

Capella also allows requirements to be documented and linked to model elements (e.g., linking
a requirement to the function that satisfies it). We used Capella in a system design process to
model use cases and functional changes across multiple partner contributions.

Real-Time and Embedded Modeling with TASTE: You can use ESA’s TASTE frame-
work for real-time embedded systems, especially ones that will eventually run on an OS or
use middleware. TASTE lets you model tasks (called Functions in SDL), interfaces between
them (using ASN.1 for data modeling and automatically generated communication code), and
deployment (which function runs on which CPU, on which bus, etc.). Key aspects:

o You can draw state machines in SDL for component behavior, define interface data
structures in ASN.1, and then TASTE will generate code (in Ada, C, or others) for the
communication glue (like message passing or bus commes).

o It integrates with simulation: you can run the system on a “virtual platform” where
each component might be a process on a host machine, communicating via a simulated
bus, which is excellent for testing.

o We see TASTE as particularly useful in ensuring all interface assumptions are explicit
and that we could swap implementation languages for components (e.g., one compo-
nent in C, another in Ada, and TASTE handles their interaction).

By using TASTE, you can effectively apply MBSE principles at the software architecture level —
the model is the code to some extent or at least generates a lot of the repetitive code.

Interface Definition with ASN.1 and Auto-generation: A very pragmatic MBSE prac-
tice we follow is using ASN.1 to formally define data structures for communications (teleme-
try/telecommand or internal messages). ASN.1 is a modeling language for data that can be
automatically compiled into code for different languages using tools like ASN1SCC [RD5]
(ESA’s ASN.1 compiler). Here’s how we use it:

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 62 of 83

The communication interfaces (e.g., all the telemetry packets and telecommands or
network messages between subsystems) are defined once in ASN.1 files.

ASN1SCC is run to generate C code for those definitions (structures, encoding/de-
coding functions) and maybe also for other languages (we’ve generated Ada and soon
Python from the same ASN.1).

This ensures that every part of the system (flight SW, ground SWV, test tools) uses the
same data format, eliminating mismatches.

The ASN.1 is a formal spec — we consider that part of our MBSE artifacts, as it is
machine-readable and documents interfaces.

The combination of ASN.1 modeling and auto-code generation is a concrete example of

MBSE providing consistency and saving time (less manual coding, fewer bugs). We will see

this in the case study 8.5 where the protocol generation is described.

¢ Simulation and Validation of Models: After building models (Capella, TASTE, etc.), you
can perform simulations on them:

o

O

In Capella, simulating a scenario (step through a functional chain to see data flow) is
possible.

With state charts, some tools allow the execution or generation of test cases from
state models.

With TASTE, you can compile and run an entire system model on a host for validation.

This doesn’t replace testing the final code, but it can catch integration logic issues or early interactions.

It’s also a way to validate requirements: e.g,, if a requirement says, “Component A shall send data to

B at 10 Hz”, you ensure in the model that there is a functional path for that and simulate timing.

7.2.2. Challenges and Considerations

MBSE isn’t a silver bullet and introduces its challenges:

e Tool maturity and interoperability: Different teams might prefer different tools, but not
all integrate. We have seen models exported from one tool to import into another (using

exchange formats like XMl or OSLC), which sometimes works but sometimes loses infor-

mation. Custom code generators or scripts may be needed to bridge gaps.

e Learning curve: Engineers need training to use MBSE tools effectively. Drawing good models

is a skill — otherwise, you risk “diagramming” without much value. Start with modest MBSE

and grow as the team gains skill — remember Section 4.1 advice and use MBSE pragmatically

and where it makes sense.

o Keeping models in sync with reality: Updating the model when things change requires

discipline. If the model becomes outdated, people stop trusting it. You may mitigate this by

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective

© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 63 of 83

tying work products to the model (e.g., you cannot change code for an interface unless the
ASN.1 is updated first). But it’s an ongoing effort to avoid divergence.

¢ Deciding level of detail: One can model down to a very low level (every thread, every
variable), but that may not be worth it. Choose what to model: usually architecture and inter-
faces, sometimes key algorithms abstractly, but not every line of code. The aim is to model
enough to get the benefits (clarity, code gen) but not try to model everything (which could be
as time-consuming as coding itself).

The key to successful MBSE adoption is pragmatism:

e Use it where it adds clear value (complex interfaces, cross-team understanding, safety-critical
logic).

e Don’t force it where a simple document or script would do.

¢ Ensure management supports the initial overhead because MBSE might initially seem slower
(drawing diagrams vs hacking code) but pays off later in integration and maintenance.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 64 of 83

8. CASE STUDIES

8.1. STIX Flight Software — A Validation of Our Guiding Principles

The Spectrometer/Telescope for Imaging X-rays (STIX) is one of ten instruments on ESA’s Solar Or-

biter spacecraft, launched in 2020. STIX’s flight software had to manage detector data processing on

an Instrument Data Processing Unit (IDPU), which included an FPGA and a LEONS3 processor running

RTEMS (a real-time operating system).

8.1.1. Challenges

The initial software development contractor faced multiple challenges:

The testing hardware was unavailable during the early flight software development, limiting
testing opportunities.

Early development was done without a strong Cl or virtualization setup. Much testing was
done manually or at a very high-level interaction (integration test level instead of unit tests).
No reproducible build or well-automated testing setup was created.

A lot of effort went into the boot loader (“Startup Software,” SuSW), which did not leave
much time or budget for the actual Application Software (ASW).

Many of the onboard algorithms for data analysis kept changing and were difficult to “pin
down.”

Due to these factors, the project encountered issues late in the development (during instrument test-

ing and even during the spacecraft integration):

The PI institution had to take over software development late in the project because the
supplier stopped developing it before completing the work. The SuSW development was com-
pleted, but the state of the Application Software was very preliminary.

Because of the lack of automation (virtualization and with the test hardware), a lot of effort
has to be invested in creating a pragmatic testing environment. Because of time constraints,
no full automation was achieved (or even attempted), which impeded testing and lowered

A lot of effort had to be spent creating visibility of the project state and prioritizing develop-
ment. Some issues were only detected during the flight. Luckily, no serious problems were
found.

Fixing these issues under time pressure was challenging and risky.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 65 of 83

8.1.2. Approach

Five core developers rewrote 90% of the STIX Application Software before launch. They also sup-
ported stabilizing and improving the STIX software post-delivery:

e We cleaned up the project and focused on creating reproducible builds with clear versions
and a history of older binaries.

e We improved the development environment, for example by enabling real-time debugging on
hardware with gdb.

e We started extending EGSE scripts to allow reproducible and automated testing, combining
telemetry parsing and telecommand sending, controlling test hardware (like the detector hard-
ware emulator), running sequences to stimulate the test hardware, analyzing results in the
science analysis environment, etc.

e We applied the engineering principles laid out in Chapter 4. For example:

o We added asserts to the code to ensure we find coding and programmatic issues
during testing (dynamic verification).

o We ran static checkers on the code (static verification).

o We extracted the file system into an external project and mocked the FLASH system
to run extensive file system operations.

o We simplified the functional chains and introduced simpler but robust processes, e.g.,
limiting telemetry and telecommand buffers, which would throw away extra TM or
TC in case of flooding but would otherwise not fail.

o We introduced a clear development and issue-tracking process using GitHub.

e Later, in the frame of a research project, we formally verified parts of the STIX file system
[RD13] and found and fixed several minor bugs.

e Later, we built a prototypical STIX emulator based on QEMU.
8.1.3. Lessons Learned

The STIX experience underscored:

e If CI/CD and virtualization had been used, many issues would likely have been caught earlier
(e.g., an automated integration test could have found a particular telemetry encoding error
rather than during spacecraft commissioning).

e Early investment in test infrastructure pays off massively later. The effort to create the virtual
platform and tests after the instrument was built was much higher than it would have been to
make it incrementally during development.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 66 of 83

¢ Traceability is key: When issues arose, the first question asked was, “What requirement
was this code supposed to fulfill?”’ If that wasn’t clear, it caused delays. Aligning code to re-
quirements (with IDs in code comments and tests referring to them) would have clarified
intent.

e This case reinforced our conviction to always push for Cl, even if the project timeline is tight.
The argument “no time for Cl/tests now, we’ll test later” did not hold — it ended up costing
more time later. We explicitly allocate time for test infrastructure in proposals or project
plans and explain that it is as important as coding.

8.2. NASA cFS - Reliability through Modular Architecture

Embedded flight software for space missions must be robust and reliable, operating autonomously
under harsh conditions without opportunities for physical intervention after deployment. A single
software malfunction can jeopardize an entire mission. For this project, we adopted NASA's Core
Flight System (cFS) [RD7] as the foundation for developing a new platform to test quantum-safe en-
cryption modules intended for space use.

NB: While cFS's decoupled message-based architecture offers clear advantages described here, mon-
olithic payload and platform software systems (such as the one developed for STIX, described in Sec-
tion 8.1) may sometimes be more suitable depending on mission requirements.

8.2.1. Challenges

Key challenges included:

¢ Ensuring reliability under resource constraints: The flight software needed to run re-
liably on limited hardware resources without compromising performance.

e Managing complexity and compliance: The software had complex functionality and had
to adhere strictly to aerospace standards and specified interfaces.

e Adapting to changing requirements: Project requirements and hardware interfaces
evolved during development, requiring the architecture to accommodate updates quickly and
safely.

o Early defect detection: Traditional late-stage testing would be inadequate. Early identifica-
tion and resolution of software defects were critical to preventing costly problems later in
development.

To address these challenges, we required an architecture supporting modularity, portability,
rigorous testing, and continuous integration and validation across multiple platforms.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 67 of 83

8.2.2. Approach

We selected NASA’s open-source Core Flight System (cFS) as our base architecture for flight software
development. The cFS framework offers a modular architecture, dividing software into independent
applications that communicate via a software bus. This modularity simplifies development, debugging,
and testing. Additionally, cFS includes an Operating System Abstraction Layer (OSAL), enabling the
same codebase to run unmodified on multiple platforms, such as a Linux-based simulator for develop-
ment and RTEMS on the actual spacecraft processor.

Figure 11 illustrates this software architecture, highlighting application communication over the cFS
message bus.

Time
Management RCS

Management
Context

Management Thrm / Pwr

Management
Memory

Management AT

Management

Mode

Manager
Telemetry

Output
Autonomy
Management

Scheduler

Command Data
Ingestor Exchange

RT OS (RTEMS)

NASA cFS

Mass Memory

Figure 11: lllustration of the overall flight software system, tailored to a specific mission.
Key aspects of our approach include:

e Modular Software Architecture: Clearly defined, independent cFS applications simplify
parallel development and reduce complexity.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

HW on Bus

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 68 of 83

Operating System Abstraction Layer (OSAL): OSAL allows consistent execution of
flight software on development machines, simulators, and spacecraft hardware without modi-
fications, significantly increasing test coverage.

Continuous Integration/Continuous Delivery (CI/CD): With CI/CD, we can automate
pipelines to build, test, and analyze code changes continuously. Each commit triggers a suite of
unit and integration tests executed on Linux servers, catching defects early.

Software Validation Facility (SVF): The SVF, as shown in Figure 12, performs repeatable
automated testing, including nominal and off-nominal scenarios. The SVF conducts closed-loop
tests against simulated devices by employing software models of hardware components. Tests
are executed across multiple environments (PC-based simulation or hardware-in-the-loop set-
ups), and results are logged and analyzed automatically. Usually, an SVF is a “shippable” frame-
work that can be used by the customer, e.g., ESA, to run their own tests.

OBC SVF Local Dev

NASA Core Flight System

File
Manage FDIR
ment

NASA Core Flight System

NASA Core Flight System

OSAL .

1553/
UART ;g;’il
Model

HW Simulator (CPU)

Numerous PS

Figure 12: Visualization of the Flight Software with the three runtime layers.

Static Analysis and Formal Methods: To complement testing, we integrate static analysis
tools (e.g., PVS-Studio) into development workflows to automatically flag potential issues. For-
mal verification can be selectively applied to prove the correctness of critical algorithms when
feasible.

Model-Based Development: We use ASN.1 and ASN1SCC to auto-generate consistent
and correct code from high-level definitions to generate protocols.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 69 of 83

Figure 13 illustrates the testing infrastructure, showing how requirements and interface definitions
feed into SVF test suites. Tests run in different environments (development PCs, high-fidelity sim-
ulators, onboard computers), with faster tests executed on each commit and more intensive tests
scheduled periodically.

Requirements SVF Test Set
Interfaces < Tests
Open/Closed Loop, Black/White
Box, Performance, Requirements, 1
Defect/Regression Identified
e e EEM Test Defects
Campaign

OSAL (Linux x86/x64)

Developer-focussed, quick turnaround,
open+closed loop tests HW
A 4

Qualification & validation fo-
cused,

Developer-focussed, performance measurements,
performance measurements,

Simulator Artifacts
=P Logs of act/exp re-
sults, resource use,
code coverage, ...

open+closed loop tests,
concurrent testing

Figure 13: System diagram for the Software Verification Facility and testing approaches.
8.2.3. Benefits

Adopting cFS and these software quality practices provides several concrete benefits:

¢ Improved Reliability: The modular structure allows thorough testing of individual compo-
nents, making it easier to isolate and correct issues early. Extensive testing across simulation,
hardware-in-the-loop setups, and SVF provides high confidence in integration.

¢ Increased Development Efficiency: OSAL allows developers to code and debug on stand-
ard Linux machines without waiting for flight hardware. Parallel development and frequent
integration significantly reduce development cycles.

¢ Rigorous Testing Capabilities: Automated testing through the SVF ensures regressions
and integration issues are identified quickly, reducing late-stage debugging time and costs.

¢ Flexibility to Adapt: The abstraction provided by cFS and OSAL enables straightforward
adaptation to changing requirements or hardware interfaces, minimizing costly redesigns.

¢ Continuous Quality Assurance: Combining static analysis, model-based code generation,
and formal checks allows the early detection and resolution of defects, ensuring software ma-
turity earlier in the project lifecycle.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 70 of 83

¢ Reduced Risk and Cost: Early and automated testing, proven frameworks, and rigorous
analysis significantly reduce overall project risk. Potential mission-impacting software defects
are identified and resolved well before deployment, avoiding costly late-stage fixes.

8.2.4. Lessons Learned

Our experience with the chosen approach reinforces several vital lessons:

¢ Invest Early in Infrastructure: Establishing automated CI/CD and testing infrastructure
early in a project pays off significantly by catching defects early and improving confidence in
software quality. Delaying this investment often leads to increased risk and cost later.

¢ Leverage Proven Frameworks: Adopting a validated framework such as cFS reduced de-
velopment risk and effort compared to creating a custom architecture from scratch. Proven
frameworks provide a robust starting point and enable quicker development.

e Modularity Facilitates Testing: Designing software as modular components simplified
testing and debugging, enabling developers to isolate and correct problems efficiently. While
modularity often involves message-based decoupling (as in cFS), a well-designed monolithic
architecture can also achieve similar modularity.

¢ Continuous Integration Catches Issues Early: Frequent integration and automated test-
ing significantly improved software stability. Inmediate feedback prevented integration prob-
lems from accumulating into more significant issues later.

e Holistic Quality Approach: High-assurance software requires multiple complementary
quality practices. Combining static analysis, formal verification of critical modules, model-based
code generation, and comprehensive testing provided a robust quality assurance strategy. Re-
lying on a single technique is insufficient; effective software quality results from employing
multiple reinforcing methods.

8.3. EGSE Scripting Language — Inherently Safe Execution

Although specific project details cannot be disclosed, this brief case study highlights valuable practices
to ensure software reliability and correctness within an embedded testing environment. The project’s
primary objective was to develop a robust, inherently safe scripting language for Electrical Ground
Support Equipment (EGSE). The language is needed to generate accurate telemetry and telecommands
to interact and test simulated or actual hardware instruments. Unexpected errors in execution could
potentially leave sensitive instruments in a harmful or undefined state, making predictability, reliability,
and correctness paramount.

8.3.1. Challenges

The EGSE project confronted a few unique challenges:

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 71 of 83

¢ Inherently Safe and Correct Scripting: We had to ensure that any script written by a
user could not accidentally harm the connected hardware. Errors in the script (incorrect loop
definition, missing language structure elements like curly brackets, etc.) must be detected be-
fore beginning script execution.

¢ Integration with Existing Tools: The new EGSE scripting environment had to integrate
with existing testing workflows, including the stack of real telemetry/telecommand messages.
Ensuring compatibility with hardware interfaces and legacy test procedures was a non-trivial
task.

¢ Flaky Deployment Pipeline: The CI/CD pipeline was outdated and had to be adjusted to
run our new scripting environment. However, interactions with the IT department were slow
and not straightforward.

8.3.2. Approach

We developed the scripting language using ANTLR to achieve inherent safety and reliability. This ap-
proach explicitly mapped every language operator, such as mathematical operations, loops, and condi-
tional statements, to clearly defined, safe execution paths. Rather than individually verifying each script,
the scripting language architecture itself ensured correctness and safety by design.

Rigorous unit tests were created directly in the scripting language. These test scripts were translated
into telecommands and executed against a separate loopback test class implemented directly in C++.
Each operation was independently evaluated using these "raw" C++ commands. Comparing results
from the scripting language implementation and the independent C++ implementation provided high
confidence in correctness, significantly reducing the risk of identical interpretation errors appearing in
both implementations simultaneously.

To allow testing of the telemetry/telecommand system and later simplify integration with the real
TM/TC system of the encompassing EGSE framework, we designed an external interface class, like an
adapter class, that can abstract any external command and make it available to the scripting language.
Ideally, the existing TM/TC messages can be auto-generated and mapped to the external interface to
reduce implementation efforts and user coding errors.

The team improved the existing Continuous Integration and Continuous Delivery (CI/CD) pipeline to
use Docker images and GitLab Registries to ensure repeatable builds. The entire build, test, and de-
ployment process was containerized using Docker, with container images hosted securely within
GitLab Registries. Secure secret management was introduced to allow Docker containers to access
GitLab infrastructure securely. Additionally, configuration parameters were externalized and securely
injected into containers from dedicated, well-managed configuration stores. This approach ensured a
consistent, secure, and repeatable integration and deployment process.

8.3.3. Benefits

Key benefits realized from these practices included:

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 72 of 83

¢ Inherent Reliability: The scripting language architecture and rigorous testing approach sig-
nificantly reduced the likelihood of runtime errors or unsafe instrument states.

¢ Consistent and Repeatable Testing: Containerizing the build and test processes ensured
repeatable and consistent results across development and deployment environments.

¢ Enhanced Security: Secure secret management and externalized configuration parameters
improved overall security and reduced risks associated with sensitive data handling.

¢ Increased Confidence: Independent verification of command execution through separate
implementations significantly increased confidence in correctness and reliability.

¢ Clean and Modular Code: We replaced the existing scripting approach with our new strat-
egy, simplifying and decoupling the entire setup (EGSE framework vs. scripting) to be more
flexible and robust.

8.3.4. Lessons Learned

This case study reinforced the following lessons:

o Safety by Design: Architecting scripting languages with inherent correctness significantly
reduces runtime risks.

¢ Independent Verification: Comparing independent implementations of the same function-
ality provides high assurance of correctness.

o Effective CI/CD Practices: Containerization and secure management of build and deploy-
ment processes enhance software reliability and security.

8.4. CI/CD Automation of Onboard Image Processing Pipeline

Modern earth observation satellites are moving towards using onboard machine learning (ML) algo-
rithms to reduce the amount of data transmitted to ground stations. In this first of three studies, our
team designed and developed an onboard image processing pipeline suitable for embedded satellite
payload hardware. The goal was to preprocess optical imagery onboard in real-time using a Tensor-
Flow-based processing graph, including demosaicing, image corrections, and projections. Ve built and
integrated this TensorFlow pipeline directly into our embedded OS and control software, verifying
functionality and performance automatically through a Continuous Integration/Continuous Delivery
(CI/CD) pipeline.

Subsequent studies built upon this initial effort: Study 2 added object detection models to this platform.
Study 3 culminated in an integrated real-time demonstrator that successfully performed onboard ob-
ject detection using drone-mounted cameras.

Figure 14 illustrates the TensorFlow-based preprocessing pipeline we implemented.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 73 of 83
v 3 ¥
i White
Bed sl — Bad i) Balancing & Deconvolution
Detection Correction
Scaling
Rotation Flow
¥ M \ Field
Dark-Field &
Flat-Field — Geometry
. Background Demosaicing
Estimation ot Correction
Radial
‘ Distortion
Flow Field
Vignetting

Correction

‘v

Flat-Field Correction

Banding
Correction

—

Figure 14: Schematic of the final pre-processing pipeline, as previously shown.

8.4.1. Challenges

Integrating TensorFlow-based image processing into embedded payload software posed several chal-
lenges:

e Hardware Constraints: Target hardware (embedded Linux boards running Buildroot and
microcontrollers running Zephyr RTOS, initially evaluated but ultimately not selected) had
limited CPU power and memory. The TensorFlow models developed on desktop computers
needed significant optimization to fit these constraints.

e Complex Integration Workflow: Models were developed in TensorFlow/Python, but
flight software was written primarily in C/C++. Manual integration of these distinct workflows

risked human error and inconsistency.

¢ Constant Performance Evaluation: One of the study’s objectives was to evaluate the
performance of the chosen methods. Consistently evaluating all the different and changing
processing steps would be tedious, so they had to be reliably automated.

e Slow Feedback Loop: Without automation, building, deploying, and testing model changes
on embedded hardware was slow and tedious. Integration issues were often discovered late,

causing rework.

¢ Testing and Reliability: Mission-critical software required extensive testing to ensure cor-
rectness and avoid regressions after each change.

¢ Toolchain Complexity: Multiple tools and frameworks (TensorFlow Lite, Zephyr,
Buildroot, QEMU virtualization, and GitHub Actions) had to be integrated seamlessly.

8.4.2. Approach

From the beginning of the project, we wanted to integrate all the different study pieces into a CI/CD
pipeline. Thus, we implemented an automated CI/CD pipeline combining TensorFlow model

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 74 of 83

integration, embedded software builds, virtualized hardware testing, and continuous performance eval-
uation to overcome these challenges. The entire system, from model to embedded OS to flight soft-
ware, was developed and integrated within a single version-controlled repository.

Key elements of our approach:

e TensorFlow as an Execution Graph: We modeled the image processing pipeline using
TensorFlow as an execution graph, which allows rapid iteration, a clear structure, and built-in
optimization tools.

e Automated Model Integration: Each TensorFlow model update triggered automated con-
version to TensorFlow Lite (TFLite), verifying compatibility with embedded runtimes and re-
source constraints.

¢ Integrated OS and Software Builds: The CI pipeline built the embedded Linux OS
(Buildroot, see Figure 15), along with our flight control software, automatically integrates the
latest TFLite model, ensuring reproducibility and consistency across builds.

- Internet @ Host binary (from distribution)
£ ¢ Host binary
Target binary

Source code —» Distribution compiler —¢ [Buildroot scripts
L > Host compiler —¢

Package scripts » Target compiler ——>» Target binaries
Patches Build configuration Extra board files > Install scripts

l

Target image

Figure 15: Buildroot build process

¢ Virtualized Hardware Testing (QEMU): We used QEMU to emulate the embedded
hardware, enabling automated hardware-in-the-loop style testing in a virtual environment after
every software or model change.

e Automated Functional and Performance Testing: The pipeline executed functional
tests (verifying the correctness of image preprocessing) and performance tests (CPU utiliza-
tion, memory footprint, processing speed), immediately flagging regressions or resource viola-
tions.

Figure 16 shows an overview of our automated CI/CD workflow.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 75 of 83

Model Creation Flight Software Build Flight Software Integration

Git Checkout Git Checkout Git Checkout

Setup Python Setup Embedded

Toolchain Toolchain Setup QEMU

Process Test Fetch TensorFlow Fetch Software
Images Model Image

Create TensorFlow e Performance Evluation

Model Complle Tests in QEMU

Terpm:::'[:l:w i Publish — iy
Model
(Release)
Build Software

Publish
Image (Test)

Figure 16: This illustration shows a preliminary CI/CD pipeline design, from Model Creation to Performance Evaluation.

8.4.3. Benefits

Though the focus of the study was much broader than building an automated CI/CD pipeline, using

this approach of automated CI/CD and virtualization-driven provided significant benefits:

Rapid and Reliable Integration: Continuous automated builds and tests enabled fast iter-
ation cycles, quickly surfacing and resolving integration issues and running regular evaluations.

Improved Quality and Stability: Regular functional and performance testing in realistic
(virtualized) conditions significantly reduced runtime errors and integration faults.

Efficient Performance Evaluation: Continuous performance evaluations allowed rapid
testing and performance evaluation of new approaches, e.g., after changing the TF-based pro-
cessing graph.

Enhanced and Parallel Collaboration: Unified tooling and processes for software and ML
engineers improved team transparency, alignment, and collaboration, allowing for parallel work
to be executed.

Full Traceability and Reproducibility: Version-controlled automation provided full trace-
ability and effortless reproduction of builds and tests, significantly simplifying debugging and
evaluation.

8.4.4. Lessons Learned

Key takeaways from this first study included:

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 76 of 83

¢ TensorFlow as a Prototyping Tool: Using TensorFlow allowed flexible experimentation
with the image processing pipeline. It enabled us to evaluate and iterate individual processing
steps quickly. However, performing computationally intensive tasks, particularly debayering
and processing large images, on a CPU with limited memory proved suboptimal. Ideally, these
image-processing steps should run on dedicated hardware like GPUs or FPGAs.

e CI/CD and Virtualization Trade-offs: Combining CI/CD with virtualization (QEMU) sig-
nificantly improved our development workflow and enabled frequent automated testing with-
out constant hardware access. Nevertheless, building the entire platform is resource-intensive
and should be limited to periodic (e.g., nightly) builds rather than triggered continuously.

¢ Realistic Performance Measurement Limitations: While virtualization allowed accu-
rate memory usage measurements, CPU performance measurements using QEMU on stand-
ard GitHub Actions runners were not realistic in absolute terms. However, relative CPU met-
rics remained useful for detecting performance regressions or improvements over time.

¢ Flexible Platform Evaluation: The pipeline structure allowed us to easily switch underlying
platform components, for example, replacing Zephyr with Buildroot, and quickly evaluate
changes using different QEMU CPU emulations. In our study, switching to Buildroot on a
virtualized RISC-V CPU enabled the standard TensorFlow Lite runtime, which supports a
broader instruction set. The Zephyr-based approach required TensorFlow Lite Micro, which
supported fewer operations supporting our test scenarios.

8.5. Automated Multi-Platform Protocol Generation

Communication protocols are the lifeblood of any space mission, governing how data is exchanged
between onboard and ground systems. In complex projects, there can be numerous interfaces — be-
tween onboard instruments, instruments, and the spacecraft platform, and between the spacecraft and
various ground facilities. All of these interfaces must speak the same language (protocol) flawlessly.
Even a minor inconsistency in a protocol implementation can lead to serious issues, from data misin-
terpretation to complete loss of communication with a subsystem. Defining and implementing these
protocols traditionally involves writing detailed interface control documents and hand-coding the mes-
sage structures and parsers in various software components (flight software, ground software, test
tools, etc.). This manual approach is error-prone —ambiguities or mistakes in documentation can result
in different teams implementing the protocol slightly differently. In the worst case, such issues might
only be discovered during mission operations. Our team experienced this pain in past projects: late-
stage bugs caused by a mismatch between the spacecraft sent telemetry and how the ground expected
to decode it.

In this case study, we set out to apply Model-Based System Engineering (MBSE) principles to the prob-
lem of communication protocols. The idea was to have a single, authoritative definition of the protocol
(a formal model) and then automatically generate all the software artifacts (code and documentation)
from that model. By doing so, we aim to ensure complete consistency across all systems and reduce
human error to near zero. The context included supporting standard space communication protocols

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 77 of 83

— specifically, those defined by CCSDS (Consultative Committee for Space Data Systems) and ESA’s
PUS (Packet Utilization Standard) — and any mission-specific custom protocols. The solution needed
to produce code in multiple languages for use on different platforms (embedded C/C++ in flight soft-
ware, maybe Ada for some systems, and even scripts or higher-level code for ground tools). The
challenge and opportunity here was to streamline protocol handling software development and im-
prove its quality dramatically.

8.5.1. Challenges

Some of the challenges inherent to communication protocol development that we aimed to overcome
were:

¢ Complex, Evolving Specifications: Protocols for space systems (like CCSDS teleme-
try/telecommand or PUS services) are detailed and can evolve with new revisions. Manually
aligning every piece of software with the latest spec update is tedious and error-prone. A small
change in the packet definition (say, adding a field) must be propagated to many documents
and codebases by hand, often leading to missing something.

o Multiple Stakeholders and Interfaces: In a typical mission, different teams might handle
different segments (platform vs. payload, spacecraft vs. ground). Any team’s misinterpretation
of an interface document can introduce inconsistency. Moreover, each team might implement
the protocol in a different programming language. Ensuring all those independent implementa-
tions behave identically is a major challenge.

¢ Testing and Validation Overhead: Verifying that every interface respects the protocol
spec requires considerable effort. It usually involves writing separate test cases to send known
data and check that it’s interpreted correctly by the other side, essentially re-validating the
protocol logic in each implementation. This is duplicate work if each side codes it inde-
pendently.

o High Stakes for Mistakes: An outdated or misaligned protocol implementation in the space
environment can cause severe operational disruptions. For example, if an instrument expects
a telemetry packet in one format but the spacecraft sends it in another, the data could be lost
or, worse, a command could be misinterpreted. These errors can be highly costly to diagnose
and fix after launch. We wanted to eliminate the possibility of such mistakes by construction.

Given these challenges, the team turned to Abstract Syntax Notation One (ASN.1) as the formal
modeling language for our protocols. ASN.1 is an internationally standardized language used to define
data structures for communication protocols (widely used in telecom, cryptography, etc.). The idea
was to have a single ASN.1 specification that describes all the messages (telemetry packets, telecom-
mands, etc.) for our system and then generate everything. Figure 17 illustrates the concept: it shows
the many places where protocol definitions come into play (onboard payload-to-platform comms,
platform-to-ground, ground data systems, etc.). By modeling the protocol once, we could ensure that
every actor in this diagram uses the exact same definitions.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 78 of 83
Payload 1 o ¢ X ?ig
- 4
Payload 2 e % Sy L]) «—>
Platform Mission Processing ESA Mission
Payload 3 Facilities Control Facilities

g aog g

Payload Processing Payload Operations
Facilities Facilities

)

Scientific Analysis
Environments

Figure 17: This illustration shows the communication paths between various actors in a space system. Protocol packets are
generated, modified, integrated, and processed at each stage.

8.5.2. Approach

Our approach leverages the existing ASN1SCC compiler and the ASN.1-based PUS-C libraries, trans-
forming them into a comprehensive, turn-key automation toolchain. This toolchain takes ASN.1 pro-
tocol definitions and automatically generates consistent code and documentation across multiple plat-
forms and programming languages. We did not build ASN1SCC itself or the existing ASN.1 PUS-C
libraries. However, we developed the ASN1SCC Scala backend, enabling the generation of formally
verified Scala encoders and decoders. For other languages and targets, we can leverage existing
ASN1SCC compiler backends.

Key elements of our implemented solution included:

¢ Single Source of Truth (ASN.1 Specifications): All protocol message definitions, such
as spacecraft telemetry packets, telecommand formats, and similar data structures, are cap-
tured in ASN.1 syntax. There is a comprehensive ASN.1 PUS-C library available [RD5]. Each
message is formally defined, specifying fields, data types, constraints, and complex structures
(like nested sequences, choices, or enumerations). Thus, ASN. 1 is an authoritative specifica-
tion source, replacing traditional textual documents and eliminating ambiguity.

¢ Automated Code Generation: Starting from these ASN.1 specifications, we automatically
generated source code for various subsystems. We primarily targeted:

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 79 of 83

o C for flight software and embedded ground systems

o Scala for certain ground applications, particularly JVM-based mission control systems,
benefiting from formally verified encoder and decoder generation

o Ada to maintain compatibility with legacy or safety-critical systems

o Python (under development) to create data processing pipelines and analysis soft-
ware.

For instance, generated C code included appropriate data structures and encoding/decoding
functions with built-in boundary checks. This ensured flight software did not require manually
written packet-handling code, significantly reducing human error risks.

¢ Automated Documentation Generation: Besides executable code, the toolchain auto-
matically generates human-readable documentation (HTML and PDF). This documentation
serves as an interface control document (ICD), directly derived from ASN.1 definitions. It
described field structures, data types, valid ranges, and constraints. Because documentation
was generated from the same ASN.1 source as the code, documentation, and implementation
remained consistently synchronized. New telemetry packet definitions immediately appeared
in generated code and corresponding documentation, significantly reducing maintenance effort.

¢ Integration with CI/CD: Our toolchain can be integrated directly into continuous integra-
tion pipelines. Although ASN.1 specifications typically change infrequently, the toolchain auto-
matically produces updated code and documentation when updates occur, ensuring consistent
and rapid deployment.

e Support for Standards (CCSDS/PUS): Our solution leverages existing standardized
ASN.1 PUS-C libraries to generate encoders/decoders compliant with standard PUS-C ser-
vices. When missions require standard services (such as PUS Service 1 for Telecommand Ver-
ification or Service 6 for Memory Management), we directly use or extend these existing
ASN.1 libraries. Thus, our approach inherently guarantees compliance with CCSDS/PUS stand-
ards.

Figure 18 illustrates this automated ASN.1-to-code workflow. In practical use, engineers update the
protocol specification (e.g., adding a new telemetry message definition to support a new sensor or
subsystem) in ASN.1. Once the specification has been updated, the automation toolchain runs, either
manually or automatically as part of a Cl pipeline, and immediately produces updated, consistent out-
puts: the C code used by flight software for telemetry packet encoding, the formally verified Scala
classes used by the ground software for decoding, and the corresponding documentation snippets.
These generated artifacts were then reviewed and integrated into their respective codebases. The key
benefit is guaranteeing consistency across all outputs, eliminating the risks associated with manual,
error-prone duplication of implementation efforts.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 80 of 83
[[F %
1
ASN.1 PUS-C Library From Specification to Code Space Platform
Software

Qﬁ)

D00 d $Scala M% Qig

DAQP P ® Ground Mission

Specifications for Generator Control Software

Mission/Payload

1 %

. O—WF

Coming Soon

Compatible Packet Encoder/Decoders

: {
O Updates during Development and Operations e el TS 3
Integrated Ground Data
Change Control Processing Facility

Figure 18: The automated ASN.1-to-Code process allows updates to the protocol specifications to be easily integrated into
all software components and version-controlled.

We successfully applied this approach to new protocol developments and adopting existing standards.
For example, to handle CCSDS standards, we utilized standardized ASN.1 modules. For PUS-C (the
current Packet Utilization Standard revision), we use existing ASN.1 modules defining standard ser-
vices. Our automation toolchain thus directly supports generating packets such as the "Successful
Acceptance Verification Report" (PUS Service 1, Subservice 1, typically denoted TM(1,1)).

Figure 19 provides an example of such a generated output, illustrating how a TM(1,1) telemetry packet
defined in ASN.1 translates directly into generated code across different languages and platforms.

C Files “PUS-1-1.c” /‘,
From Specification to Code PUS-CTM(L,1) d

Successful Acceptance Verification Report
Finclue s

Payload/Platform
ASN.1 File “PUS-1-1.asn1” rt_ACN_Encode(const Code
itStrea peitstrs, int*
PUS-C TM(1,1)
Successful Acceptance Verification Report
PUS-1-1 DEFINITIONS AUTOMATIC TAGS ::= BEGIN
Exp0RTS ALL; - -
e Scala File “PUS-1-1.scala”

. @ 1= sequance cala File -1-1.scala’
¢ reest o repest e Generator ’ Scala
, PUS-C TM(1,1)
o0 Successful Acceptance Verification Report E g

cors s Ground Mission
o
) ponhea'= Control Software

Figure 19: All communication packets are specified in ASN.1. Shown here is TM(1,1) “Successful acceptance verification
report.” The specification generates C, Scala, Ada, and other code that can be integrated into existing software.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 81 of 83

8.5.3. Benefits

The automated protocol generation offers significant benefits:

e Accelerated Development and Updates: Defining protocol messages once in ASN.1 and
generating code automatically across multiple languages and platforms significantly reduces de-
velopment timelines. Updates and protocol changes are implemented rapidly by modifying a
single specification, enabling end-to-end testing within hours rather than days or weeks. This
makes the workflow agile and responsive to evolving system designs.

¢ Enhanced Reliability and Quality: The approach eliminates manual parsing and formatting
code, removing a major source of errors. Automatically generated code from formal specifi-
cations is consistent and free from typical human mistakes, greatly reducing integration dis-
crepancies. The ASN.1 specification is a single authoritative source of truth, ensuring reliable
and consistent implementations across all subsystems.

¢ Interoperability and Standards Compliance: Because generated code strictly follows
standardized ASN.1 definitions (e.g., CCSDS and PUS-C), interoperability with external tools
and systems adhering to these standards is ensured by design. This simplifies integration with
external partners or ground stations, minimizing the risk of incompatibilities and misunder-
standings.

¢ Scalability and Adaptability: Multi-language and multi-platform support ensures the tool-
chain is flexible and future-proof. Adding new languages or platforms (such as Python or Rust)
is straightforward. As projects scale in complexity and scope, the automated solution handles
increasing complexity gracefully, allowing protocol maintenance effort to scale sub-linearly
with system growth.

o Consistency and Traceability: Automatic generation ensures every generated artifact
(code and documentation) directly maps back to a single, version-controlled ASN.1 specifica-
tion. Naming and documentation inconsistencies are eliminated, simplifying verification, valida-
tion, and stakeholder communication. Changes are traceable through specification diffs, im-
proving transparency and clarity.

¢ Reduced Testing Burden and Increased Test Effectiveness: By ensuring correct en-
coding and decoding through automated generation, testing efforts shift away from debugging
low-level implementation errors toward more valuable, higher-level testing scenarios (e.g., ro-
bustness in packet loss, corruption, buffer overflows, or out-of-order delivery). As encoding
correctness is guaranteed by the generation process, testing resources are effectively allocated
to system-level integration and operational robustness, resulting in a more reliable and resilient
communication subsystem with reduced effort.

8.5.4. Lessons Learned

This case study highlighted the power of model-based approaches and taught us valuable lessons:

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 82 of 83

Single Source of Truth is Invaluable: Having one formal specification from which every-
thing is generated proved to be a game-changer. We learned that eliminating duplicate defini-
tions (in code, documentation, and across different systems) reduces errors and streamlines
the workflow. The effort invested in maintaining this single source of truth is far lower than
the cumulative effort of maintaining multiple parallel implementations. This reinforced our be-
lief that Model-Based Systems Engineering (MBSE), when applicable, can significantly enhance
consistency and efficiency. Having had a single source of truth would have helped us immensely
with STIX (see Section 8.1), where the packet encoders and decoders had to be rewritten for
multiple platforms and changed several times due to protocol adjustments.

Up-front Investment, Pay-off Later: Developing and adopting an automated generation
approach required an upfront investment in tooling and training. Initially, manually writing code
for a few messages might seem faster. However, as the project scales and evolves, automation
scales even better. Our lesson was that the early investment in automation pays off exponen-
tially as the system grows. By the end of the project, we could not imagine having managed
the protocols manually, given their complexity and evolution. This experience will encourage
us to seek similar automation opportunities in other aspects of future projects beyond just
protocol handling.

Standards Compliance by Design: We experienced first-hand how embedding standards
directly into our automated workflows removes ambiguity. Encoding standards into our tools
and code generation processes ensure compliance “by design.” This method proved far more
reliable than relying on individual engineers to interpret a lengthy standard document correctly.
This approach can also be extended to other domains, such as automatically generating tests
from requirement specifications to ensure compliance.

Maintaining Flexibility: While automation ensures consistency, we also learned the im-
portance of maintaining flexibility. There were a few cases where generated defaults were not
optimal, and we required manual interventions (for example, for performance tuning or ex-
ceptional cases). We designed our system to allow custom hooks or annotations in the ASN.1
specifications to handle these exceptions (such as instructing the generator to use specific
encoding optimizations). The key lesson is that automation should not be a black box; having
ways to intervene selectively is beneficial. Balancing fully automated generation with occasional
tailored adjustments provides the best of both worlds: consistency, efficiency, and the ability
to optimize when necessary.

Cross-Discipline Communication: Implementing our solution required close coordina-
tion between systems engineers (defining protocols), software engineers (integrating gener-
ated code), and quality engineers (performing verification). It fostered a more collaborative
approach to interface design. Instead of simply handing over an Interface Control Document
(ICD), teams sat together to formalize protocols in ASN.1. This cultural shift was highly posi-
tive, fostering deeper engagement in interface design. People thought more carefully about
every field (since they effectively were “coding by spec”), and we caught logical issues earlier
at the specification stage. The lesson is that formal methods can significantly improve

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

Doc-Nr-.: Intern-TN-0004-ATS

Issue: 11R2
Release Date: 15.08.2025
Page: 83 of 83

communication, providing a concrete artifact (the model) that everyone can reference and
discuss clearly.

Future-Proofing and Tool Evolution: Finally, we recognized that establishing and main-
taining a fully automated pipeline is not a one-time task; it requires ongoing care and updates.
Although we leveraged an existing ASN.1 PUS-C library, we developed the ASN1SCC Scala
backend to generate formally verified Scala encoders and decoders. By distinguishing between
reusing mature libraries (such as the existing ASN.1 definitions for PUS-C) and developing
customized generation backends (such as our Scala backend), we could better manage expec-
tations and maintain a sustainable development process.

Establishing Robust Software Quality Practices in Space Software Systems — An Engineering-Driven Perspective
© Ateleris GmbH

